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Respect

If a man does not keep pace with his companions,
Perhaps it is because he hears a different drummer.

Let him step to the music which he hears,
However measured or far away.

From Walden, or Life in the Woods by
Henry David Thoreau



Preface

This book is intended to calm a storm and lead everyone to a better understand-
ing of mathematics. Little did I know what reaction there would be when I went 
to an open day, at Highdown school in Reading, and showed the pupils there 
how to divide by zero. The presentation was televised and, within a few hours, 
a storm of protest blew up across the world. In the succeeding weeks, over one 
hundred thousand people commented on my work. This convinced me that 
there is a great public interest in division by zero, and a very great need to get 
the facts straight. There is a need, too, to make crystal clear what my views on 
division by zero are, and to show how division by zero can improve all our 
lives.

Transmathematics is just ordinary mathematics, except that it ignores the 
prescription not to divide by zero. It comes as a great shock to many people that 
this can be done without introducing contradictions into mathematics, but this 
is so, and was proved even before the infamous open day. If you doubt it, read 
the chapter on the axioms of transreal arithmetic. But it is easier to start with the 
chapter that explains how to do arithmetic with a pencil and paper when 
division by zero is allowed. Subsequent chapters on elementary algebra, limits, 
power series, differential calculus, integral calculus, metric spaces, and 
topological spaces form the main spine of the book. These chapters introduce 
many of the topics that are used in everyday mathematics. I have filled these 
out with chapters on topics that I hope will be helpful. Other chapters, including 
those on the nature of numbers, poles, logarithms, and the Riemann Sphere are 
included because I was asked for them by courteous correspondents. Finally, 
some chapters are included just for fun. The result is more like a cook book 
than a mathematical treatise – here are a thousand recipes for dividing by zero, 
without getting your fingers burnt!

The first part of the trick to dividing by zero has been known for a long time. I 
adopt the axiom that any positive number divided by zero is positive infinity
and, correspondingly, any negative number divided by zero is negative infinity.
But I hold that positive infinity and negative infinity are separate from each 
other and are not joined as an unsigned infinity. I have a very practical reason 



for assuming this. If I want a single, unsigned infinity, as is used in projective 
geometry, then I just glue my two signed infinities together by operating on their 
modulus, or absolute value. This is easy to do. But if I had adopted a single 
infinity, as an axiom, it would be very difficult to split it apart into positive and 
negative parts. Thus, I have adopted one model of infinity that mathematicians 
recognise as the extended, real-number line with affine (not projective) 
infinities.

The second part of the trick to dividing by zero is so subtle that no one seems to 
appreciate how it works when they first have it explained to them. Remember 
that any positive number divided by zero is the number positive infinity and any 
negative number divided by zero is the number negative infinity, but what, then, 
is zero divided by zero? It is the number nullity.

That’s it. Zero divided by zero is a number. This does two amazing things. 
Firstly, ordinary arithmetic is nearly total. The sum (addition) of any two 
numbers is a number, the difference (subtraction) of any two numbers is a 
number, the product (multiplication) of any two numbers is a number, but no 
number can be divided by zero. So division applies only to part of the set of 
numbers. However, by introducing positive infinity, negative infinity and, 
crucially, nullity, the quotient (division) of any two numbers is a number. So the 
new form of division applies to the totality of the set of numbers, just like the 
other operations of ordinary arithmetic, and this makes transarithmetic total. A 
total arithmetic always works, which is just to say that it never fails, and this is 
very useful. Having computers that cannot fail when doing arithmetic is a very 
good thing indeed. This is the property that will make our lives better and safer. 
But the second property of nullity is even more amazing.

The numbers in transarithmetic are absolutely fixed and immutable, but we can 
use them to model situations in which we have less than perfect knowledge. We 
can use transarithmetic to calculate with ordinary numbers so that we know their 
magnitude and sign. But there are practical and mathematical occasions when 
numbers become so big that we cannot tell exactly how big they are – we know 
only that they have a very large magnitude and are positive, or that they have a 
very large magnitude and are negative. Transarithmetic’s positive and negative 
infinities can stand in for these numbers when we use them as limits in calculus. 
Sometimes we know only that a number has a very large magnitude, but we do 
not know what sign it has. In these cases the modulus of transarithmetic’s 
positive and negative infinities stands in for the unsigned, but very large, 



magnitude. And there is one more case, where we know nothing of the 
magnitude and sign of a number. Ordinary arithmetic cannot describe this 
situation, but transarithmetic can. Nullity stands in for a number with an 
unknown magnitude and sign. Thus, we may interpret transnumbers as 
modelling a hierarchy, running from complete knowledge of ordinary numbers, 
partial knowledge of the magnitude and, possibly, the sign of infinities, and 
total lack of knowledge of the magnitude and sign of zero divided by zero. In 
order to describe this state of affairs we have to annotate ordinary mathematics 
with explanations of where it does and does not work, and we have to take 
abortive action in programs where the underlying mathematics fails; but we do 
not have to do that with our new mathematics. Transmathematics works 
everywhere and each number tells us what is known about its sign and 
magnitude. Thus, the operations of transarithmetic provide a calculus of 
knowledge and ignorance. That really is amazing! Henceforth, computers can 
calculate what they do and do not know, just by performing arithmetic. The 
details of how to do this are rather more intricate than I have described here, but 
I give examples of how to do it throughout the book.

Some mathematicians say that nullity is no different from the bottom element, 
of mathematical logics, that represents a state of total ignorance, but this misses 
a very important point. Transarithmetic was not developed as an axiomatic 
system, it was developed by using the existing methods for performing ordinary 
arithmetic, but ignoring the prescription not to divide by zero, while preserving 
the maximum possible amount of information about the sign and magnitude of 
numbers. This leaves no room for manoeuvre in assigning properties to nullity, 
and therein lies the difference. We have the freedom to change the properties of 
bottom, we have no freedom to change the properties of nullity. Nullity is a 
fixed number.

If I wanted to be cute with the cognoscenti of mathematical logic, I would say 
that bottom has a successor, but nullity does not. They would smile, wryly, and 
admit that bottom and nullity are different things.

Now we come to the nub of the issue. Mathematicians have been able to divide 
by zero in arithmetic for fifty years, or more, but they do it, in various ways, by 
defining the infinities and a bottom element axiomatically. By contrast, I just 
follow ordinary arithmetic, but allow division by zero in a way which preserves 
the maximum information about the sign and magnitude of numbers. 
Consequently, everything in transmathematics is consistent with ordinary 



mathematics and, as a bonus, transmathematics preserves the maximum amount 
of information about sign and magnitude. It is the preservation of the maximum 
possible information that makes transarithmetic uniquely well suited to being 
the principal extension of ordinary arithmetic. All other extensions of ordinary 
arithmetic, using the extended real-numbers with a bottom element, can be 
obtained by accepting transarithmetic as is, or by throwing away some of the 
information in transarithmetic so that it matches a more limited conception of 
the infinities and a bottom element. Of course, some extensions to ordinary 
arithmetic introduce more numbers than two signed infinities and a bottom 
element, but it seems that transarithmetic can be extended in the same ways, 
while maintaining the property of preserving the maximum possible information 
about the sign and magnitude of numbers. If so, transarithmetic generalises any 
other generalisation of ordinary arithmetic. The generalisation of ordinary, real 
arithmetic to ordinary, complex arithmetic and its subsequent generalisation to 
transcomplex arithmetic is particularly interesting.

Transmathematics can do everything that ordinary mathematics does, and more. 
The critical issue is whether or not these new results are useful. I claim that they 
are useful in computing because they remove all arithmetical exceptions and 
make it easier to design processors and write programs. Both of these 
simplifications contribute to making computerised systems safer. I claim that 
transmathematics is logically consistent so it is a valid kind of pure 
mathematics. I may well make a mistake in developing transmathematics and 
introduce some inconsistency, but I expect that I will be able to correct my 
mistakes so that transmathematics remains consistent. In this effort, machine 
proof is extremely valuable. It provides exceptionally detailed checking which 
is easy to re-do when corrections are made. Finally, I am on the look out for 
physical systems that can be described more easily using transmathematics than 
with ordinary mathematics. If I find such systems, I will have demonstrated that 
transmathematics is useful in developing our scientific understanding of the 
universe, and this might translate into engineering applications of that 
knowledge, making our lives better. In conclusion, my view is that division by 
zero provides three things: easier and safer computation; a consistent extension 
of ordinary mathematics that preserves the maximum possible information 
about the sign and magnitude of numbers; and it creates the possibility of 
describing the physical universe in a way that is better than using ordinary 
mathematics. I hope my views are now crystal clear. If not, then ask me for a 
clarification.



In this preface, I have tried to give you something of the flavour of 
transmathematics. I hope you enjoy this book and will go on to use 
transmathematics in your daily life. You can use it everywhere that you use 
ordinary mathematics, and it will reward you by making your life safer and 
better.

If you have any constructive suggestions to make about this book then do 
contact me, or drop me a note to say what successes or difficulties you 
encounter in using transmathematics.

Dr James Anderson, BSc, PhD, MBCS, CITP, CSci. 
Lecturer in Computer Science 
Reading University 
England 
 
email: author@bookofparagon.com 
web: www.bookofparagon.com

mailto:author@bookofparagon.com
http://www.bookofparagon.com
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CHAPTER 1 Introduction
Division by zero Since the invention of zero, more than a thousand years ago, people have wanted 
to know how to divide by zero. For many centuries, every attempt ended in fail-
ure so that it became an assumption, ingrained by experience, that division by 
zero is impossible. The reasons for this failure were eventually explained by giv-
ing proofs of the impossibility of dividing by zero, but, just like the proof that it is 
impossible for a rocket to fly to the moon, because no chemical substance on 
Earth has enough energy to lift its own weight into orbit, the solution was easy 
enough when it was recognised in the twentieth century. In the case of rockets, 
burn up a lot of fuel to deliver a small payload onto the moon, in the case of divi-
sion by zero, define it by axiom. But there is something unsatisfactory about the 
axiomatic methods for dividing by zero. Some work on abstract sets of things, 
using mathematical techniques far removed from the arithmetic of ordinary life. 
Some work on various algebraic objects, but do not preserve the properties of 
ordinary numbers. Each of these techniques is useful in its own sphere, but what 
is wanted is a method for dividing by zero using the ordinary methods of arithme-
tic. It will come as shock to many people that such a method exists.

I surveyed a number of the pencil and paper methods for performing arithmetic 
and discovered that some of these algorithms continue to give answers even when 
division by zero is involved. It took me a while to collect enough of these 
methods together to support the whole of arithmetic, but, when the job was done, 
I was invited to give a seminar on transarithmetic at Essex university, in England. 
1
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The audience knew that there was a time when people could count using only 
whole numbers, . Such ancient peoples could add and multiply any two 
numbers together to produce a number as a result. But they could not do the same 
with subtraction. It was not until zero was invented that they could subtract a 
number from itself and produce the answer zero. Then they could do things like 

 and . They could even do, , but they could not 
subtract just any number from any other. It was not until negative numbers were 
invented that they could do, . At this point, any two numbers could be 
added, subtracted, or multiplied to produce a number as a result, but the same 
could not be done with division. It took a few more centuries to make 
multiplication work with irrational numbers, but, throughout, division by zero 
seemed impossible.

And then there I was, showing a room full of scholars how to divide by zero 
using only the arithmetical methods we have all known for a long time, without 
drawing on any of the axiomatic methods for dividing by zero. During the usual 
to and fro of questions, one of them asked if I had a formal proof that these 
methods are consistent. I said that I had published a hand proof that the methods 
are consistent with ordinary arithmetic, but that I had not used a computer to 
check that the methods are internally consistent, because that would be a very 
great deal of work. They were a little disappointed, but one of their number 
volunteered to produce the proof, if I would write the methods down as axioms. I 
went back to my own university and wrote down the axioms. My colleague from 
Essex was true to his word and, in about three weeks work, spread over a couple 
of months, he translated the axioms into higher order logic, extended a standard 
model of the real numbers so that it could model the transreal numbers, proved a 
number of theorems that follow from the axioms, and set a computer the task of 
testing the axioms against this model. The computer tested every possible 
combination of the axioms and concluded that transarithmetic is consistent.6

Since then, I have continued to develop transmathematics. I have set myself the 
task of developing a thread of mathematics from arithmetic to topological spaces. 
When this is in place, I will be able to fill in transmathematics so that it deals with 
all of the mathematics that people commonly use. And this will be a benefit to us 
all. Transarithmetic, which is the basis of transmathematics, does everything that 
ordinary arithmetic does, and more. It is a total arithmetic, which is to say that 
every operation of arithmetic – addition, subtraction, multiplication and division 
– can all be applied to any numbers and the result is a number. This, as my 
colleagues at Essex knew, is interesting from an academic point of view, because 
it supplies a piece of the jigsaw that has been sought for a thousand years, and 
more. But, as they also knew, it would make computers quicker and safer, 

1 2 3 …, , ,

1 1– 0= 2 2– 0= 0 0– 0=

1 2– 1–=
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Introduction
because there would be no possibility of arithmetical failure. The application of 
transarithmetic to computers will make all of our lives safer and better.

But I remain on the lookout for a bigger prize. It is conceivable that the physical 
world operates according to the rules of transarithmetic, not just according to the 
rules of ordinary arithmetic. If I can find examples of this, then transarithmetic 
will illuminate our understanding of the world in a way which cannot be done 
using ordinary arithmetic. It is a lofty goal, but a worthy one.

Sadly, some people are not prepared to consider the possibility that division by 
zero is possible. They read tittle-tattle about my work, and do not read the 
primary sources. Or they read of the machine proof of consistency and ignore it. 
They read the axioms and dismiss them as being inconsistent, without even trying 
to find an inconsistency. They say that dividing by zero must be an error, just like 
their forebears who might have complained that subtracting a number from itself 
must be an error. And they give no reason to support their beliefs. They have not 
learned from history.

The history of science tells us that paradigm shifts occur, in which the accepted 
theories, or paradigms, of the day are overturned by a new insight. During a 
paradigm shift it is quite normal for scientists to behave badly: to be rude, to 
ignore evidence, and to refuse to think about the new way of doing things. 
Regrettably, that is the stage we are now at. This book is not for those people. It is 
for the reader who is prepared to consider the possibility that numbers can be 
divided by zero. A possibility that lies on very firm foundations, since publication 
of the computer proof.6

In order to follow the story of division by zero from its historical roots we need 
little more than a grasp of the arithmetic of fractions, , of a numerator, , and a 
denominator, , where . But we shall draw on rather more mathematics 
as we progress to the development of transmathematics in the rest of the book.

Indian mathematics The number zero was known in 7th century India. Brahmagupta1 (598 - 670) 
correctly describes various properties of the addition, subtraction, and 
multiplication of zero, but says that “zero divided by zero is zero.” This is not a 
solution that is recognised, today, as being generally useful. In 9th century India, 
Brahmagupta’s ideas were updated by Mahavira1 (circa 800 - 870) who says that 
“a number remains unchanged when divided by zero.” This is a very odd thing to 
say if it means , because division by zero and division by one then have 
the same effect as each other. But if the text means “a number remains 

f n
d f n d⁄=

n 0⁄ n=
                                                                                                                                     3
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unchangeable when divided by zero,” it brings us closer to a 12th Century, Indian 
interpretation of division by zero. Bhaskara1 (1114 - 1185) writes:

A quantity divided by zero becomes a fraction the 
denominator of which is zero. This fraction is termed an 
infinite quantity. In this quantity consisting of that which 
has zero for its divisor, there is no alteration, though many 
may be inserted or extracted; as no change takes place in 
the infinite and immutable God when worlds are created 
or destroyed, though numerous orders of beings are 
absorbed or put forth.

My contemporaries are inclined to interpret this text as meaning , but 
dismiss this because they suppose they can multiply out the denominator, zero, to 

give  so that zero times infinity is equal to every 

number, . I take a different line that, in hind sight, Bhaskara is very nearly 
correct. I say that any positive number, , divided by zero is positive infinity,

; any negative number divided by zero is negative infinity, ; 
and zero divided by zero is nullity, . I call the infinities, , infinite 
numbers, and I call nullity and the infinities non-finite numbers. Now I read 
Bhaskara as being almost correct.

A quantity divided by zero becomes a fraction the 
denominator of which is zero.

This is true: n 0÷ n
0
---=

This fraction is termed an infinite quantity.

No. It is termed a non-finite quantity.

In this quantity consisting of that which has zero for its 
divisor, there is no alteration, though many may be 
inserted or extracted;

This is nearly right. If a finite number is added to (inserted into), or subtracted 
from (extracted from), a non-finite number then the non-finite number is 
unchanged. But this leaves aside the question of what happens when non-finite 

n 0⁄ ∞=

0 ∞× 0 n
0
---× 0 n×

0
------------ n= = =

n
n

n 0⁄ ∞= n 0⁄– ∞–=
0 0⁄ Φ= ∞±
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Introduction
numbers are added to, or subtracted from, each other. I settle this question by fol-
lowing the Indian mathematicians by extending the arithmetic of fractions so that 
it can handle a denominator of zero. In doing this I maintain all of the positive 
results of mathematics, but overturn some of the negative results. For example, 
for all finite, n , I write:

[E 1.1]

Thus, I overturn the view, used as a counter example, that zero times infinity is 
any number, . Instead, I maintain that zero times infinity is the single 
number nullity, , and, though it is not shown above, that zero times 
negative infinity is also nullity, . The details of how I carry this out 
consistently are explained in the next few chapters. But the broad outline is clear. 
I am following in the footsteps of the Indian mathematicians who sought to 
extend the arithmetic of fractions.

Overturning accepted 
results

The general reader may like to know that when I overturn an accepted view, this 
is simply a statement of mathematics. I do not imply any criticism of my 
colleagues. Indeed, I am very grateful to them for laying out their reasons so 
clearly, because it helps me to see how my work differs from theirs, and shows 
me where the gap in understanding arises between us. I have no doubt that, for 
my part, I am wrong on many matters, and that by criticising each other’s work 
we shall close the gap between us, thereby coming to a better understanding of 
mathematics.

Differential calculus There is another, broad, approach to division by zero that was pioneered in the 
17th Century by Newton (1643–1727) and Leibniz (1646–1716). Differential 
calculus deals with the changes to a quantity that occur in the limit as a 
denominator is taken close to, but not equal to, zero. Calculus is astonishingly 
useful and is highly regarded by all, but it specifically excludes the case of 
division by a number that is exactly zero. Consequently, no result in calculus can 
contradict anything in transarithmetic, because the two areas of mathematics deal 
with different things. Calculus deals with division by infinitessimal numbers, 
excluding zero, and transarithmetic deals with division by zero. There is no 
overlap, and no contest, between the two approaches. I do, however, spend a 
great deal of time discussing limits and calculus. As always, I do not disturb any 
of the positive results of mathematics, but I do overturn some of the negative 
results. For example, I evaluate power series at essential singularities, despite the 
fact that calculus holds this to be impossible. I am also able to distinguish 
between more kinds of limits than Newton and Leibniz knew about, and I can 

0 n×
0

------------ 0 n×
0 n×
------------ 0

0
--- Φ 0

0
--- 0

1
--- 1

0
---× 0 ∞×= = = = = =

0 ∞× n=
0 ∞× Φ=

0 ∞–( )× Φ=
                                                                                                                                     5



Transmathematics
calculate results where they could not. Thus, transarithmetic enriches our 
understanding of mathematics.

Denotational Semantics Another, broad, approach to division by zero was pioneered in the 20th Century 
by Strachey (1916–1975) and Scott (1932–). Denotational semantics14 explains 
the meaning of computer programs and uses a logical element bottom which 
means that nothing is known. Bottom can be used in many ways, and when it is 
added to the axioms of arithmetic it can be used to mean that nothing is known 
about zero divided by zero. Bottom can be added to any consistent, logical 
system without introducing any contradictions, so it allows division of zero by 
zero without contradiction. But what of division of a positive or negative number 
by zero? Denotational semantics has something to say about this, too, but it says 
it using the whole, complex, machinery of infinite sets. There is no doubt that one 
can describe transarithmetic in the language of denotational semantics, but the 
result is far more complex than transarithmetic, and far more mutable. 
Denotational semantics can be used to describe anything that can be programmed 
in a computer, but it does not, of itself, provide precise specifications of how to 
divide a number by zero.

Set theory, category theory There are many other logical approaches to division by zero, and many ways of 
using set theory to talk about sets of results. These can all handle the absence of a 
numerical result, for zero divided by zero, by using the empty set of results with 
no elements, but that is quite different from having an element, nullity, that is 
zero divided by zero. In some of these approaches the empty set is used to denote 
zero so it would be very messy to use it all over again to represent nullity. It could 
be done, but the resulting theory would be far more complicated than 
transarithmetic.

Wheels There is another, broad, approach to division by zero that was developed by 
Carlström (1973–). Wheels9 are algebraic structures that allow division by an 
element zero. The generalisation of division is perfectly natural, from an 
algebraic point of view, but does not preserve the maximum possible information 
about magnitude and sign when applied to real numbers. Consequently, the 
arithmetic of wheels is quite different from transarithmetic. Again, there are 
many other algebraic approaches to division by zero, but none of them describes 
exactly the algebraic structure of transarithmetic.

NaN There is also an international computer standard12 that holds that zero divided by 
zero is a special object that describes a class of objects, each of which is Not a
Number, NaN. This standard is ambiguous, but can be read in a consistent way so 
that no logical problems arise from the very odd property that NaN is not equal to 
6



Introduction
itself. By contrast, nullity is equal to itself and, as a consequence, is much easier 
to use than NaN. I discuss NaN in the chapter NaN.

Readership There have, no doubt, been many conscious and unconscious influences on my 
development of transarithmetic. And, just as I read historic Indian 
mathematicians from a modern perspective, so there must be many ways to read 
transarithmetic from the point of view of very sophisticated mathematical 
theories. My business, though, is to explain transarithmetic, and the 
transmathematics that develops from it, in a simple way so that it can be used by 
the widest possible range of people. As I infamously demonstrated, fifteen year 
old school pupils can learn to divide by zero in twenty minutes, so it will not take 
professional mathematicians very long to learn how to do it, though the general 
reader may be a little rusty on the school mathematics that is needed. Since my 
first demonstration, eleven year old children have learnt transarithmetic.

Presentation I have tried to keep the presentation of mathematics very simple. When 
equations, or other formulas, appear in text, I punctuate them just like English. 
But when they appear as free standing text, as in [E 1.1], I do not punctuate them. 
As most English punctuation marks have a special mathematical meaning they 
are inherently ambiguous, forcing the reader to disambiguate them by context. 
This is easy to do in a block of text, because only short eye movements are 
required to check context, but freestanding equations are split off from blocks of 
text by some distance so that it takes long and, potentially, inaccurate eye 
movements to work out the context. This may not be a problem for fluent readers 
of mathematics, who may well prefer to have all equations punctuated, but it is 
confusing to the beginner and the dyslexic reader.

I have numbered equations, E c.n, by the letter, E, denoting an Equation, the 
C hapter number, , and the Number, , of the equation within the chapter. 
Similarly, I label Axioms as A c.n, Definitions as D c.n, and T heorems as T c.n so 
that free standing formulas are clearly labelled by the role they perform in the 
development of a mathematical argument.

I also take care to give different things within a chapter individual names. For 
example, I do not refer to the topological space, T, and the topology, T, by relying 
on a change of font to make the distinction clear. Instead I talk of a topological 
space, S, and a topology, T. Nor do I follow the practice of using a single noun to 
refer to different kinds of things within a chapter. For example, I do not use 
“topology” to refer ambiguously to a topological space or a topology. While such 
contractions may be a normal part of the discourse of fluent mathematicians, they 
are nothing but a hindrance to the beginner and the dyslexic reader. In my view, 

c n
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such ambiguous uses should be expunged from all introductory texts. However, I 
do re-use names and symbols between chapters. To do otherwise would require a 
vast vocabulary which would, itself, be a hindrance to understanding.

In the on-line version of the book, text coloured read is a hyperlink to related 
material within the book or to external sources of information.

I have refrained from supplying an introductory chapter on mathematical 
notation. For many readers it would be completely unnecessary and for all 
readers it would delay the interesting story of how to divide by zero. Instead, I 
explain notations where they are first used, and summarise the use in the 
appendix, Notation. There is, therefore, an advantage to reading the chapters in 
sequence, but the reader should feel free to dip in and out of chapters, consulting 
the appendix whenever necessary. The reader who is a little rusty at mathematics 
might want to read just the chapters on Pencil and Paper Methods, elementary 
algebra, and the nature of numbers, before laying the book aside, on a coffee 
table, for the enjoyment of visitors.

Invitation Everyone is welcome to send me a critique of this book, or to suggest a topic for 
a new chapter, or to offer a new chapter of their own. I am very happy to engage 
in discussions on transmathematics and to record upsets and progress here.
8



CHAPTER 2 Axioms of Transreal Arithmetic
Proofs The arithmetic we use in our daily lives is a lot more detailed than many people 
suppose. Transreal arithmetic is defined in thirty-two axioms, given after the next 
section on notation. This is thirteen more than ordinary arithmetic. The extra axi-
oms are all those that describe the properties of the strictly transreal numbers 

∞ ∞ Φ, ,– . These are: [A4], [A5], [A9], [A10], [A11], [A15], [A16], [A20], [A21], 
[A22], [A23], [A24], [A25]. The remaining nineteen axioms are just the axioms 
of the ordinary arithmetic of real numbers, when the strictly transreal numbers 
are struck out from the transreal axioms. This can be verified by looking up the 
axioms of real arithmetic in a text book and showing the equivalence algebrai-
cally. It would be possible to give a formal proof that transreal arithmetic con-
tains the whole of real arithmetic as a proper subset, but no one has given this 
proof so far.

It has been proved that the axioms of transreal arithmetic are self consistent. My 
colleague from Essex translated the axioms of transreal arithmetic into higher 
order logic and used a computer proof system to verify consistency.6 This is the 
most detailed kind of proof it is possible to have, but it is not very readable. It 
would be possible to translate the computer proof into a human proof but, so far, 
no one has done so.

In fact, axiom [A32] is due to my colleague from Essex. He found a fault in my 
axiom that carried the transrational numbers into the transreal numbers. Axiom 
11
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[A7] is due to Andrew Adams (1969-), his axiom is far neater than my original 
version. Andrew found one redundant axiom in my original axiomatisation using 
a hand proof, and my colleague from Essex found four redundant axioms using 
machine proof. This demonstrates the advantage that machine proof has. It 
explores every detail of an axiomatisation and throws up all logical faults. Even 
so, a human mathematician, such as Andrew, can find a result before a computer 
does.

Machine proof has the huge advantage that it can be re-done very quickly, by the 
computer, when the user amends an axiom, but it requires a great deal of 
mathematical and programming knowledge to use machine proof effectively. I 
am very grateful to my colleague from Essex for the care he took in producing the 
proof.

Thirty two axioms is a small number, as machine proofs go, but it would be 
possible to reduce the number of axioms to one. A balance has to be struck, 
however, between laying out the axioms in a form that is useful to the human 
mathematician, and a form that is suitable for a computer. No doubt experience 
will suggest other axiomatisations but, for now, this is the only axiomatisation of 
the transreal numbers so we must make the best of it.

If the reader wants to show that transreal arithmetic is inconsistent then all that is 
needed is a proof that a contradiction follows from the axioms. The Pencil and 
Paper Methods are a very quick way to explore the axioms and to look for 
contradictions, but many people are tripped up by their ingrained habits of 
ordinary pencil and paper methods. It is better, therefore, to translate an 
attempted counter proof into an axiomatic proof. Having said that, I make very 
free use of the pencil and paper methods in the presentation of proofs. There is 
nothing wrong with using these methods, once it has been proved that they 
compute the same results as the axioms. Such a proof is given in the chapter on 
Pencil and Paper Methods. It would be possible to give a more detailed proof 
than is presented there but, so far, no one has produced such a proof.

Mathematicians say that ordinary, real numbers form an algebraic structure called 
a field, which can be axiomatised in just eight axioms. This is true, but real 
arithmetic also has ordering relationships so that, for example, we know that one 
is bigger than zero. Putting in axioms for ordering increases the number of 
axioms. It is possible to add some infinities to a field, but this requires yet more 
axioms. Finally, adding nullity, or the transreal infinities, breaks the field axioms 
so that transarithmetic is not a field. In fact, no name has been given to the 
12
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algebraic structure of transreal numbers. All in all, thirty two axioms is not 
excessive for a total number system.

Notation The strictly transreal numbers are: negative infinity ; positive 
infinity ; and nullity .

, , ,  are, respectively, the operations of addition, subtraction, multiplication, 
and division. They apply to ordinary numbers in the ordinary way, but also apply 
to the strictly transreal numbers.

In ordinary mathematics, , is known as the multiplicative inverse and we have 

 when  is not zero. It comes as a shock to many people to 

discover that the multiplicative inverse is not the whole of division.

A more general form of division arises from the reciprocal:  In 

transarithmetic, the superscript minus one, , denotes the transreciprocal, as 
shown. This includes the ordinary reciprocal, which is defined via the 
multiplicative inverse. The transreciprocal also applies to the strictly transreal 
numbers which have no multiplicative inverse.

Parentheses, round brackets, are evaluated, as usual, from the innermost bracket 
to the outermost. The result is then written without brackets. For example, 

, and . Parentheses can be 
used to distinguish the negation of a single number from a subtraction of two 
numbers. Thus,  and .

,  are the operations equals and not-equals.

 is true when  is false, and is false when  is true. The symbol “ ” is known 
as “not.” For example,  means that two is not equal to three, which is a true 
statement, and  means the same thing, that two is not equal to three.

, , ,  mean, respectively,  is less than ;  is less than or 
equal to ;  is greater than ;  is greater than or equal to .

The comma, “,” introduces an alternative. For example, , means, “  is 
not equal to negative infinity and  is not equal to nullity.”

∞– 1–( ) 0⁄=
∞ 1 0⁄= Φ 0 0⁄=

+  – × ÷

a 1–

a a 1–× a
a
--- 1= = a

n
d
---⎝ ⎠

⎛ ⎞ 1– d
n
---=

1–

2 4 3–( )×( ) 2 1×( ) 2= = 2 4×( ) 3–( ) 8 3–( ) 5= =

2 3 4–( )×( ) 2 1–( )×( ) 2–= = 3 2–( )+ 3 2– 1= =

= ≠

a¬ a a  ¬
2 3≠

2 3=( )¬

a b< a b≤ a b> a b≥ a b a
b a b a b

a ∞ Φ,–≠ a
a
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 introduce the alternatives,  and .

The colon, “:” means “when” or “such that.” For example, [A5], 
, means, “  plus infinity equals infinity, when  is not 

equal to negative infinity and  is not equal to nullity.”

 means that if  is true then  is true. It is also read as, “  implies .”

 means, “if  is true then  is true and if  is true then  is true”. This is 
also read as, “  is true if and only if  is true.”

 means, “there exists an .”

 means, “for all .”

 is true when both of  are true, and is false when either or both of  
are false. This is read as “  and .”

 is true when either or both of  are true, and is false when both of  
are false. This is read as “  or .”

The function  is used as a shorthand so that  when , 
 when ,  when , and  when .

a± +a a–

a ∞+ ∞ : a ∞ Φ,–≠= a a
a

a b⇒ a b a b

a b⇔ a b b a
a b

a∃ a

a∀ a

a b∧ a b, a b,
a b

a b∨ a b, a b,
a b

sgn a( ) sgn a( ) 1–= a 0<
sgn a( ) 0= a 0= sgn a( ) 1= a 0> sgn a( ) Φ= a Φ=
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Axioms Axioms are expressions which are assumed to be true without proof. Logical 
inference rules, that is to say, proof methods, are applied to axioms to obtain 
derived theorems. The axioms and derived theorems together comprise the whole 
set of theorems.

Additive Associativity [A1]

Additive Commutativity [A2]

Additive Identity [A3]

Additive Nullity [A4]

Additive Infinity [A5]

Subtraction as Sum with Opposite [A6]

Bijectivity of Opposite [A7]

Additive Inverse [A8]

Opposite of Nullity [A9]

Non-null Subtraction of Infinity [A10]

Subtraction of Infinity from Infinity [A11]

Multiplicative Associativity [A12]

Multiplicative Commutativity [A13]

Multiplicative Identity [A14]

Multiplicative Nullity [A15]

Infinity Times Zero [A16]

Division [A17]

a b c+( )+ a b+( ) c+=

a b+ b a+=

0 a+ a=

Φ a+ Φ=

a ∞+ ∞ : a ∞ Φ,–≠=

a b– a b–( )+=

a–( )– a=

a a– 0=  : a ∞ Φ,±≠

Φ– Φ=

a ∞– ∞–  : a ∞ Φ,≠=

∞ ∞– Φ=

a b c×( )× a b×( ) c×=

a b× b a×=

1 a× a=

Φ a× Φ=

∞ 0× Φ=

a b÷ a b 1–( )×=
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Multiplicative Inverse [A18]

Bijectivity of Reciprocal [A19]

Reciprocal of Zero [A20]

Reciprocal of the Opposite of Infinity [A21]

Reciprocal of Nullity [A22]

Positive [A23]

Negative [A24]

Positive Infinity [A25]

Ordering [A26]

Less Than [A27]

Greater Than or Equal [A28]

Less Than or Equal [A29]

Quadrachotomy 
Exactly one of:  

[A30]

Distributivity  
 

[A31]

Lattice Completeness  
The set, , of all transreal numbers, excluding , is lattice complete because

 
[A32]

a a÷ 1 : a 0 ∞ Φ,±,≠=

a 1–( )
1–

a : a ∞–≠=

0 1– ∞=

∞–( ) 1– 0=

Φ 1– Φ=

∞ a× ∞ a 0>⇔=

∞ a× ∞– 0 a>⇔=

∞ 0>

a b 0>– a b>⇔

a b b a<⇔>

a b≥ a b>( ) a b=( )∨⇔

a b≤ b a≥⇔

a 0<( ) , a 0=( ) , a 0>( ) , a Φ=( )

a b c+( )× a b×( ) a c×( )+  : = a ∞±=( ) b( )sgn c( )sgn≠( ) b c+ 0 Φ,≠( )∧ ∧( )¬

X Φ

Y : Y X⊆∀ u X∈∃  : y Y∈∀  : y u≤( ) v X∈∀  : y∀ Y : y v≤∈( ) u v≤⇒( )∧( )⇒
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Notes Axiom [A17] uses a superscripted minus one, . This superscript has several 
uses in ordinary mathematics. It can mean the generalised inverse, the inverse, 
the multiplicative inverse, or the reciprocal. In ordinary mathematics the 
multiplicative inverse and the reciprocal are synonyms for each other, but all of 
the inverses are different from each other. In transreal arithmetic the 
multiplicative inverse and the reciprocal are different things, and the superscript 
minus one means the reciprocal not the multiplicative inverse. As [A20], [A21], 
[A22] show, transreal arithmetic has more reciprocals than real arithmetic does. 
Furthermore, [A19] shows that the reciprocal of the reciprocal of a number does 
not return us to the number in the single case that the number is minus infinity. 
This single non-bijectivity marks an important difference with real arithmetic.

Axiom [A23] defines all positive numbers in terms of infinity. By contrast, most 
other axiomatisations of arithmetic define a special class of positive numbers by 
giving a complicated construction and then slowly building up to negative 
numbers. We get negative numbers in the very next axiom, [A24].

Axiom [A25] says that infinity is greater than zero. Consequently we can write 
just  for  so that positive infinity is written without a sign, following the 
usual convention for positive numbers. The axiom is important though. Knowing 
that infinity is greater than zero is enough to prove that there is no transreal 
number bigger than infinity. By contrast, ordinary arithmetic cannot prove that 
infinity is big, this has to be given as an extra axiom in ordinary arithmetic.

Ordinary arithmetic has an axiom of trichotomy which means that a number is 
less than zero, equal to zero, or greater than zero. But [A30] adds a fourth case, a 
number can be equal to nullity. This axiom means that nullity is incomparable 
with any number marked out on a scale of numbers which may run anywhere 
from minus infinity to infinity. This forces nullity to have certain topological 
properties that are disjoint from the extended, real-number line. It also raises 
interesting issues about the nature of nullity. On a practical level, it means that 
many mathematical proofs that exploit trichotomy now have to consider a fourth 
case where a number is nullity. Very often these proofs survive, but sometimes 
they are overturned. This can be accommodated by extending a theorem so that it 
deals explicitly with nullity.

Axiom [A31] shows that transreal arithmetic is non-distributive in certain, very 
restricted cases. The consequence of this is that formulas in transarithmetic are 
very sensitive to the order in which any sub-expressions are written down or 
bracketed together. It comes as a shock to many people that ordinary arithmetic is 
sensitive to such orderings (for example, when division is re-ordered as a 

b 1–

∞ +∞
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multiplication to avoid the possibility of division by zero, as discussed in the 
chapter on the See Saw), but there are many more cases to deal with in 
transarithmetic. Typically, proofs in transarithmetic are longer than ordinary 
proofs, because they have to deal with these conditions, but the extra labour is 
illusory. No amount of work with ordinary arithmetic can deal with division by 
zero so conventional mathematics must adopt more advanced theory to get any 
answers in these cases. This theory is invariably much harder to work with than 
arithmetic so the apparent extra labour of transarithmetical proofs is actually less 
effort than would have to be used on a conventional mathematical proof. And 
now, a health warning. Computer algebra systems seldom check side conditions, 
such as division by zero, so they often give false answers. It would be possible to 
do far more checking, using transreal arithmetic, but, so far, no one has produced 
a computer algebra system using transreal arithmetic.

Axiom [A32] has the effect of carrying transrational numbers into transreal 
numbers. The formula has too much detail, too heavily nested in relative clauses, 
to be meaningful to a human reader on its own. It is not until these details are 
clumped together in a picture, or in the words, every subset of  has a supremum,
that we can comprehend its meaning. Providing, of course, that we know what a 
supremum is and how it is used.15

To my mind, the last axiom is the closest I have ever come to reading a sentence 
of Martian. But we have the axioms now and using them is an awful lot simpler 
than working them out in the first place.

Axiomatic proofs In an axiomatic system, a proof starts from some axioms and makes a sequence 
of moves that are justified by logical inference rules. The axioms and the 
expressions which result from each move are considered to be theorems. This 
often produces an awful lot of very dull theorems on the way to an interesting 
one. This process can be seen in the paper on the proof of the consistency of 
transreal arithmetic. There are very many theorems listed in that paper,6 but 
scarcely half of them are interesting, to my mind.

Axiomatic proofs are very detailed. Ideally they are written in nothing but 
mathematical symbols, but this makes them very difficult to read. Nonetheless, 
we can illustrate how a computer goes about finding an axiomatic proof. We will 
look at two proofs: that every transreal number can be divided by zero, and that 
there is no number bigger than infinity. These results are useful in themselves, 
and it is interesting that it is impossible to obtain these proofs in ordinary 
arithmetic, but very easy in transreal arithmetic.

X
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Machine-like proof that 
every transreal number 
can be divided by zero

The transreal numbers are defined by their axioms so we want to prove that there 
is an axiom, or a chain of moves starting from some axioms, which proves that 
there is no restriction on which numbers can be divided by zero.

We scan down the list of axioms looking for the division symbol, . We find it in 
axiom [A17]. This tells us that . This means that the division of 
any transreal numbers  is defined in terms of the transreciprocal, . This 
will meet the goal of proving that all transreal numbers can be divided by zero, 
providing that we can prove the sub-goal the every number, , has a 
transreciprocal, . We now scan down the list of axioms looking for the 
superscript minus one. We find it in axiom [A19], . This tells 
us that the transreciprocal of the transreciprocal of a number is the number itself, 
unless the number is negative infinity. This tells us nothing about the existence of 
the transreciprocal, , so we give up on [A19] temporarily and carry on the 
search for a superscript minus one. We find it at [A20], . This tells us 
that the transreciprocal of zero is infinity. We make a note of this and carry on the 
search for a superscript minus one. We find it at [A21], . This tells us 
that the transreciprocal of negative infinity is zero. We make a note of this and 
carry on the search for a superscript minus one. We find it at [A22], . 
This tells us that the transreciprocal of nullity is nullity. We make a note of this 
and carry on the search for a superscript minus one. There is no further 
superscript minus one. We check our notes, we have proved that  
have a transreciprocal , but we have not proved that all transreal numbers 
have a transreciprocal. We temporarily give up on the sub-goal of proving that 
every number, , has a transreciprocal, , and carry on our search for the 
symbol, . We find it at [A18], . This tells us that every 
number, , can be divided by itself, unless the number is zero, infinity, negative 
infinity, or nullity. This does not appear to tell us anything about the 
transreciprocal, but we substitute [A17], , into [A18], 

, to give . This tells us that 
every  has a transreciprocal , except when  is zero, infinity, negative 
infinity, and nullity. We check our notes, we have already proved that every  
has a transreciprocal, , when  is zero, negative infinity, and nullity. This just 
leaves the case  is infinity to prove. We temporarily give up on [A18] and try to 
satisfy the sub goal  exists. We cannot find any axiom with  in it so we 
search for a way of re-writing infinity. We find that [A20], , allows us to 
re-write infinity as the transreciprocal of zero. Now we search for axioms that tell 
us something about the transreciprocal of zero. We find that [A17], 

, tells us that , but this does not tell us what  
is. We temporarily give up on [A17] and continue the search for axioms that tell 
us something about the transreciprocal of zero. We find that [A19], 

÷
a b÷ a b 1–( )×=

a b, b 1–

b
b 1–

a 1–( )
1–

a : a ∞–≠=

b 1–

0 1– ∞=

∞–( ) 1– 0=

Φ 1– Φ=

b 0 ∞ Φ,–,=
b 1–

b b 1–

÷ a a÷ 1 : a 0 ∞ Φ,±,≠=
a

a b÷ a b 1–( )×=
a a÷ 1 : a 0 ∞ Φ,±,≠= a a 1–( )× 1 : a 0 ∞ Φ,±,≠=

a a 1– a
a

a 1– a
a

∞ 1– ∞ 1–

0 1– ∞=

a b÷ a b 1–( )×= a 0÷ a 0 1–( )×= 0 1–
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, tells us that , so now we know that 
. We check our notes and we find that we have proved that 

every number can be divided by zero. We declare success, and throw away all of 
our temporary notes and all of the records of the sub-goals we had temporarily 
given up on.

Now, I have skimmed over a lot of detail on how a computer comes up with a 
proof, but this gives a flavour of it. The search for goals is very mechanical, but is 
helped along by rules of inference that allow the machine to substitute one 
symbol for another. The proofs are very detailed, very long, follow blind alleys in 
excruciating detail, and seem to declare success on the achievement of the most 
trivial result. This seems very messy to the human mind. What the human reader 
wants to see is a neater presentation of the proof. We can get this by pouring over 
the machine proof. In presenting the human proof we ignore boring detail, and 
use mathematical jargon to avoid long strings of mathematical symbols. Here is a 
re-write of the proof.

Human proof that every 
transreal number can be 
divided by zero

Proof that every transreal number can be divided by zero. Every transreal number 
can be divided by zero if every transreal number has a transreciprocal, [A17]. 
Every transreal number, other than , has a transreciprocal via [A18]. All 
of these numbers, except , has a transreciprocal given by, [A20], [A21], or 
[A22]. Now  via [A19] and [A20] so that  has a 
transreciprocal. Thus, every transreal number has a transreciprocal, and this 
completes the proof.

Comparison of machine 
and human proofs

The machine-like proof is much longer than the human proof. Typically a 
machine proof will be forty times longer than the corresponding human proof so 
a mathematician-programmer has to do forty times as much writing as a human 
mathematician. This makes the development of machine proofs very slow, but it 
has the advantage that the computer follows every single detail of the proof, 
whereas human mathematicians are notorious for missing out detail. It also 
means that if an axiom is amended by the mathematician-programmer then the 
computer can work through the details very quickly. It took my colleague, from 
Essex, several weeks to set up the axioms of transreal arithmetic in a computer, 
and do all of the other things needed to prepare a computer proof, but it took the 
computer only a few minutes to prove the consistency of the axioms. If my 
colleague, or another mathematician, were to re-write the computer proof, as a 
human proof, it would take many weeks to boil down the detail into a description 
that is accessible to the human reader. Someone might do this one day but, so far, 
no one has.

a 1–( )
1–

a : a ∞–≠= 0 1–( )
1–

0=
∞ 1– 0 1–( )

1–
0= =

0 ∞± Φ, ,
∞

∞ 1– 0 1–( )
1–

0= = ∞
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Human proof that there is 
no transreal number 
bigger than infinity

We wish to prove that there is no transreal number bigger than infinity. If there is 
some number  then  by [A26]. But if  is real then  
by [A10], [A24] so that this condition is not satisfied. Alternatively, if  
then  via [A4], [A11] so that, again, the condition is not satisfied. 
Finally, if  then  via [A10], [A24] and the condition is not 
satisfied. This exhausts all alternatives, and completes the proof.

Non-triviality of the 
transreal axioms

Ordinary arithmetic obeys the axioms of a field, amongst other axioms, but it can 
be shown that there is a trivial solution to the field axioms when a field has a 
single element, . In this case . By contrast, there is no trivial solution 
to the transreal axioms.6 Any system that obeys the transreal axioms has six 
distinct elements, .

Looking forward We will see shortly how to carry out transarithmetic using the arithmetic of 
fractions. This will make proofs much simpler and will allow us to present more 
detailed proofs in a smaller space than can be done with axiomatic methods.

a ∞> a ∞ 0>– a a ∞– ∞ 0<–=
a ∞ Φ,=

a ∞– Φ=
a ∞–= a ∞– ∞ 0<–=

e e 0 1= =

Φ ∞ 1 0 1 ∞, , ,–,–,
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CHAPTER 3 Pencil and Paper Methods
Introduction If you are a primary school teacher then you already teach your pupils how to 
divide by zero. This chapter will help you to clarify the message you give your 
pupils and will give you a conception of infinity and nullity that you can pass on 
to them. The chapter contains more than is needed in primary school. If you want 
to teach division by zero, you will have to select parts of the material, re-order it 
to fit your syllabus, and work with your colleagues to deliver an appropriate 
syllabus across the primary years. There is very little you can do on your own 
unless, of course, you are a sole teacher in a village school.

If you are a mathematics teacher in a secondary school then you already teach 
your pupils how to divide by zero. If you want to teach division by zero explicitly 
then you will need more material than is given in this chapter. In time, I might get 
round to extending all of the mathematics taught in secondary schools, but I will 
not live long enough to extend all of the mathematics that appears in the 
mathematical tables your pupils use. These tables summarise millennia of 
mathematical development. I cannot hope to survey and extend it all. If you teach 
middle or late years in secondary school then you can teach all of the material in 
this chapter to your own class, without reference to earlier or later years.

When you teach mathematics you might have one of several objects in mind. You 
might want to teach conventional mathematics without regard to transreal 
mathematics. This is the most conservative position you can adopt. Alternatively, 
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you might want to teach conventional mathematics in a way which does not 
obstruct the learning of transreal mathematics. This will require you to be a little 
more careful in your teaching, but will give no hint to your pupils that it is both 
possible and useful to divide by zero. Finally, you might want to teach division by 
zero explicitly. This will require you to exercise your professional judgement to 
overturn advice in your current syllabus. Do this only if you are confident of your 
position. I accept no legal responsibility for your actions. Indeed, English law 
protects me in challenging received wisdom so I can act with a reasonable 
assurance of impunity. You might not be so lucky. (Interestingly, Scottish law 
provides stronger protection. A protection which is needed by those who engage 
in paradigm breaking research. To this extent, at least, Scottish law encourages 
science more strongly than English law. But let’s stay friends, and have no 
recourse to the law!)

I can help teachers and educationalists by putting you in touch with each other, 
and by helping you to develop teaching materials. I was once a research 
psychologist and can help you carry out research on teaching methods. I am 
currently a university lecturer in Computer Science and can make presentations 
or lead workshops at your professional meetings. I have experience of 
professional and political lobbying, and can help you to win arguments about the 
teaching of mathematics and computing. I am a resource you can call on to assess 
transreal mathematics and to explore its teaching.

If you are a pupil you can teach yourself transreal mathematics. First, you need to 
be a Genius. You must be smarter than your class mates so that you can learn all 
of the mathematics they learn in school, and still have smarts left over to extend 
that mathematics to cope with division by zero. Second, you must have 
Enthusiasm. You must keep on learning, even when there is no one there to 
support you. Use the web, and use your local library. You can find interesting 
topics on the web, but you need text books to get detail. Third, achieve 
Excellence. If you work as hard as you will have to, to understand division by 
zero, then you will achieve excellence in your school work and, perhaps, you will 
achieve excellence as a mathematician. Finally, you will be rewarded with Kudos 
from your school friends and, later, your professional colleagues. Put this all 
together – Genius, Enthusiasm, Excellence, and Kudos – and you know what it is 
to be a true Maths Geek. When your friends make fun of you for taking learning 
seriously, you will know better than them what learning means.

Transreal number line Now, learning to divide by zero is actually very easy. First, you need to keep a 
picture in mind of how all the transreal numbers fit together.
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Figure 3.1:  The transreal number line

∞∞– 0

Φ

All of the numbers taught in primary schools lie on the thick black line. The 
counting numbers ( ) lie on the line to the right of zero. Fractions also lie 
on the line. Many fractions are in the gaps between the counting numbers, but the 
counting numbers are also fractions. In some countries, primary schools teach 
negative numbers. These lie on the line to the left of zero.

All of the numbers taught up to, at least, the middle years of secondary school lie 
on the line. These are called real numbers and the line is called the real-number 
line. Some countries teach infinity as an unboundedly large real number. This is a 
much smaller kind of infinity than transreal infinity. Transreal infinity is so big 
that it breaks off from the real-number line and occurs after a gap. Transreal 
infinity is the biggest infinity there is. All other infinities, that can be drawn on 
this diagram, lie in the gap or asymptotically far to the right-hand edge of the 
real-number line. Any fixed real number is called a finite number, only variables 
can move on a number line. There is also a negative infinity. Some countries 
teach complex numbers. If you want to teach transcomplex numbers then you 
will have to wait until details on these numbers are published.

No country teaches nullity in primary or secondary school. Nullity lies off the 
real-number line extended up to the infinities.

Nullity The fraction  has a name. It is called nullity. It also has a symbol, . This is the 

symbol, capital Phi, from the Greek alphabet. It is written as a Roman capital, I, 
with a ring drawn on top of the middle part of the I. The ancient Greeks and 
Romans did not know about the number nullity. Nullity was invented in 1997.4 It 

is a non-finite number. Now that nullity has been invented, we can write .

Infinity The fraction  has a name. It is called infinity. It also has a symbol, . This is 

drawn as a figure eight on its side. The name infinity is shared by many different 
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∞ 1
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0
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0
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0
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0
--- ∞

0
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mathematical objects. When we use transreal infinity we write . Transreal 

infinity is equal to any positive transreal-number divided by zero. For example:

Infinity is also a non-finite number.

Negative infinity

∞– 1–
0

------ 2–
0

------ 3–
0

------ 2–
0

---------- π–
0

------ ∞–
0

-------= = = = = =

The fraction  has a name. It is called negative infinity or minus infinity. It also 

has a symbol, . When we use transreal, negative infinity we write . 

Transreal, negative infinity is equal to any negative number divided by zero. For 
example:

Negative infinity is also a non-finite number.

Sign All countries agree that some numbers can be positive or else negative and 
distinguish these with the signs, +, and, -, respectively. But countries differ on 
how zero is treated. Some countries say that zero is positive, others say that it is 
neither positive nor negative, it is just zero. English speaking countries say that 
zero is neither positive nor negative. That is how I use zero. You already know 
how your culture treats zero and how it is taught in schools. If you live in a non-
English speaking country, you might have to be extra careful when translating 
mathematical publications in English for use at home, but you already know this. 
The number nullity is not negative, it is not zero, and it is not positive. Nullity has 
the sign nullity just as, in English speaking countries, zero has the sign zero.

Measuring and weighing Primary schools teach pupils how to measure things with a ruler, a container, and 
a weighing scale. All of these measurements are finite. Infinity is bigger than 
anything anyone has ever measured. Even if you add a kilo of chocolate to a 
weighing scale, every minute of the day, for ever and ever, this is still less than a 
transreal infinity of chocolate. If you could add an infinite weight to one pan of a 
weighing scale, it would move the scales so as to outweigh anything else you 
could put in the other pan.

∞ 1
0
---=

1–
0

------

∞– ∞– 1–
0

------=
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Nullity has never been measured. Even if you could put nullity in one pan of a 
weighing scale it would not change the position of the weighing scale no matter 
what else is in the other pan. Nullity does not register a change on any measuring 
device.

Despite the fact that no one has ever measured a non-finite quantity, such as 
infinity or nullity, non-finite quantities can be calculated in mathematical 
formulas.

Secondary schools teach pupils how to measure voltages that may be positive or 
negative, but are always finite. Negative infinity is less than any finite number 
and is less than positive infinity.

Nullity is equal to itself, but is not less than, equal to, or greater than, any other 
number.

Transreal fraction

0
0
--- 0

1
--- 0

1–
------ 1

0
--- 1–

0
------ 1

1
--- 1–

1
------ 1

1–
------ 1–

1–
------ π

2–
----------, , , , , , , , ,

A transreal fraction is a number, , where  and  are any real numbers. Here  

is called the numerator of the fraction and  is called the denominator of the 
fraction. For example, these are all transreal fractions:

In some countries, primary schools teach that the numerator and denominator of a 
fraction must be integers. This is a more restricted view of fractions than I use.

Proper transreal-fraction

0
0
--- 0

1
--- 1

0
--- 1–

0
------ 1

1
--- 1–

1
------ π–

2
-------, , , , , ,

A proper transreal-fraction is a transreal fraction with a non-negative 
denominator. For example, these are all proper transreal-fractions:

An improper transreal-fraction, , is converted to a proper transreal-fraction, , 
by negating both the numerator and the denominator:

n
d
--- n d n

d

i f
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Let i n
d–

------=  with d 0<–  then

f n
d–

------ n–
d–( )–

-------------- n–
d

------= = =

1
2–

------ 1–
2–( )–

-------------- 1–
2

------= =

Here is a numerical example of converting the improper transreal-fraction  

into the proper transreal-fraction .

In my view, it is simpler to negate the numerator and denominator than to 
multiply both by minus one, but I do not know which approach leads to better 
learning in the many countries of the world. Similarly, I think it is easiest to teach 
transreal multiplication, division, addition, and subtraction via proper transreal-
fractions, but other approaches are possible. Again, I do not know which 
approach works well in any specific country. Bear in mind, too, that all of my 
professional experience of teaching is in tertiary education. I cannot advise 
primary and secondary teachers on how to teach. You must use your own 
professional judgement.

Multiplication

a
b
--- c

d
---× a c×

b d×
------------=

∞ 3× 1
0
--- 3

1
---× 1 3×

0 1×
------------ 3

0
--- ∞= = = =

Two proper transreal-fractions are multiplied like this:

For example:

If you want to teach ordinary mathematics then teach your pupils the above rule, 
but tell them that . If you want to teach ordinary mathematics without 
obstructing the learning of transreal mathematics then teach the above rule, but 
do not give any examples involving zero denominators. If you want to teach 
division by zero explicitly then teach the above rule and do give examples 
involving zero denominators.

1
2–

------

1–
2

------

b d 0≠,
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Division

a
b
--- c

d
---÷ a

b
--- d

c
---×=

∞ 3–÷ 1
0
--- 3–

1
------÷ 1

0
--- 1

3–
------× 1

0
--- 1–

3–( )–
--------------× 1

0
--- 1–

3
------× 1 1–×

0 3×
--------------- 1–

0
------ ∞–= = = = = = =

Two proper transreal-fractions are divided like this:

For example:

If you want to teach ordinary mathematics then teach your pupils the above rule, 
but tell them that . If you want to teach ordinary mathematics without 
obstructing the learning of transreal mathematics then teach the above rule, but 
do not give any examples involving zero denominators. If you want to teach 
division by zero explicitly then teach the above rule and do give examples 
involving zero denominators.

Addition There are two rules for adding proper transreal-fractions. The first is a special 
rule for adding two infinities, the second is a general rule that applies in every 
other case.

Special rule: ∞±( ) ∞±( )+ 1±
0

------ 1±
0

------+ 1±( ) 1±( )+
0

-----------------------------= =

General rule: a
b
--- c

d
---+ ad bc+

bd
------------------=

∞ ∞+ 1
0
--- 1

0
---+ 1 1+

0
------------ 2

0
--- ∞= = = =

For example:

 using the special rule

∞ 2
3
---+ 1

0
--- 2

3
---+ 1 3 0 2×+×

0 3×
------------------------------- 3 0+

0
------------ 3

0
--- 1

0
--- ∞= = = = = =  using the general rule

If you want to teach ordinary mathematics then teach your pupils the above 
general rule, but tell them that . And teach them the following rule for 
adding numbers with a common denominator, where .

b c d, 0≠,

b d 0≠,
c 0≠
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Common denominator rule: a
c
--- b

c
---+ a b+

c
------------=

If you want to teach ordinary mathematics without obstructing the learning of 
transreal mathematics then teach the above general rule, but do not give any 
examples involving zero denominators, and do not teach the common 
denominator rule. If you want to teach division by zero explicitly then teach the 
above special and general rule, but not the common denominator rule, and do 
give examples involving zero denominators.

Subtraction

a
b
--- c

d
---– a

b
--- c–

d
-----+=

∞ ∞– 1
0
--- 1

0
---– 1

0
--- 1–

0
------+ 1 1–( )+

0
-------------------- 1 1–

0
------------ 0

0
--- Φ= = = = = =

Two proper transreal-fractions are subtracted like this:

For example:

If you want to teach ordinary mathematics then teach your pupils the above rule, 
but tell them that . If you want to teach ordinary mathematics without 
obstructing the learning of transreal mathematics then teach the above rule, but 
do not give any examples involving zero denominators. If you want to teach 
division by zero explicitly then teach the above rule and do give examples 
involving zero denominators.

School syllabus The material above is just about all the transreal arithmetic that is needed in 
primary school, and is too much for some countries, though if you are a primary 
school teacher you might want to develop more activities involving infinity and 
nullity. If you are a secondary school teacher you will want to draw on more 
sophisticated examples of transmathematics as are given, or cited, elsewhere in 
this book. In either case, you might want to know why the above methods work. 
The following proofs explain this.

Proof of consistency with 
real arithmetic

All of the methods presented above are ordinary arithmetical algorithms, as 
taught in schools, except that they allow division by zero. If all of the 
denominators happen to be non-zero then the methods compute all and only the 
results of ordinary, real-numbered, arithmetic. If a denominator is zero then an 
immediate result of , , or  is produced, but these non-finite numbers are 
not real numbers so there is no overlap with the real numbers and no possibility 

b d 0≠,

∞– ∞ Φ
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of producing a contradictory, real-numbered, immediate result. If a denominator 
is  then the result is . Again, there is no overlap with the real numbers and no 
possibility of producing a contradictory, real-numbered, immediate result. 
Finally, if a denominator is  or  then the immediate result is  or . A 
result of  could generate a contradictory real-numbered result, but  and  
are non-finite numbers so they cannot occur in a real-numbered calculation. We 
have now surveyed all of the possible ways in which non-finite numbers can 
enter a calculation and have found that none of them generate contradictions with 
the real numbers.

This proof does what is wanted, it shows that the methods presented are 
consistent with ordinary, real arithmetic; but it reads more like an alibi than a 
proof. Still, an alibi is good enough. But we want to know more, we want to know 
that the methods themselves are consistent even when they involve non-finite 
numbers. Proving this from first principles would be a very great deal of work, 
but help is at hand. It has already been proved that transreal arithmetic is 
consistent6 so if we can show that the methods support the same operations as the 
axioms then we will know that the methods are consistent. More to the point, we 
will know that the methods implement transreal arithmetic. Whenever we want to 
compute a transreal result we will then have the choice of using a laborious 
method of axiomatic proof or a quick method of pencil and paper calculation. A 
big advantage of the pencil and paper methods is that they can be implemented in 
the hardware of a computer chip so that computers can provide us with very 
quick transreal computation.

Proof that the pencil and 
paper methods implement 
all of the axioms of tran-
sreal arithmetic

We want to know that the pencil and paper methods implement the axioms of 
transreal arithmetic, as set out in the chapter Axioms of Transreal Arithmetic. In 
doing this, we assume that the methods implement real arithmetic. Consequently, 
we do not need to establish Lattice Completeness [A32] whose only role is to 
carry the axioms of transrational arithmetic over to transreal arithmetic. Nor do 
we need to establish Additive Inverse [A8] or Multiplicative Inverse [A18], 
because these are just axioms of real arithmetic. Nor do we need to establish 
Positive Infinity [A25], because this is just a syntactic definition which specifies 
the sign of the infinity symbol. Nor do we need to establish Subtraction as Sum 
with Opposite [A6], Division [A17], Ordering [A26], Less Than [A27], Greater 
Than or Equal [A28], or Less Than or Equal [A29], because these are just 
syntactic definitions that define symbols in terms of symbols already defined by 
other axioms. Indeed, this is a good reason to omit some or all of these axioms 
from an axiomatisation of the transreal numbers. We now demonstrate that the 
methods implement the remaining axioms. We starting with the easy 
demonstrations and use these to obtain the harder demonstrations.

Φ Φ

∞– ∞ 0 Φ
0 ∞– ∞
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Additive identity The Additive Identity axiom [A3] says  for all transreal . Now 

 for some real  such that . It is a theorem of transreal 

arithmetic, see [T20] in,6 that  so we use the general rule for addition, 

which gives us: . This establishes that the methods 

implement axiom [A3] for all transreal .

Having demonstrated, once, how to make an appeal to real arithmetic to establish 
transreal results, we can be less fussy in presenting the following proofs.

Additive nullity

Φ a+ 0
0
--- n

d
---+ 0 d× n 0×+

0 0×
------------------------------- 0

0
--- Φ= = = =

The Additive Nullity axiom [A4] says  for all transreal . The methods 
implement this axiom as follows.

Bijectivity of opposite

a–( )– n
d
---–⎝ ⎠

⎛ ⎞– n–( )–
d

-------------- n
d
--- a= = = =

The Bijectivity of Opposite axiom [A7] says  for all transreal . The 
methods implement this axiom as follows.

Opposite of nullity

Φ– 0
0
---– 0–

0
------ 0

0
--- Φ= = = =

The Opposite of Nullity axiom [A9] says . The methods implement this 
axiom as follows.

Subtraction of infinity 
from infinity

∞ ∞– 1
0
--- 1

0
---– 1

0
--- 1–

0
------+ 1 1–( )+

0
-------------------- 0

0
--- Φ= = = = =

The Subtraction of Infinity from Infinity axiom [A11] says . The 
methods implement this axiom as follows.

0 a+ a= a

0 a+ 0
1
--- n

d
---+= n d, a n

d
---=

0 ∞≠

0
1
--- n

d
---+ 0 d× 1 n×+

1 d×
------------------------------- n

d
--- a= = =

a

Φ a+ Φ= a

a–( )– a= a

Φ– Φ=

∞ ∞– Φ=
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Multiplicative commuta-
tivity

a b×
na
da
-----

nb
db
-----×

na nb×
da db×
-----------------

nb na×
db da×
-----------------

nb
db
-----

na
da
-----× b a×= = = = =

The Multiplicative Commutativity axiom [A13] says  for all 
transreal . The methods implement this axiom as follows.

Multiplicative identity

1 a× 1
1
--- n

d
---× 1 n×

1 d×
------------ n

d
--- a= = = =

The Multiplicative Identity axiom [A14] says  for all transreal . The 
methods implement this axiom as follows.

Multiplicative nullity

Φ a× 0
0
--- n

d
---× 0 n×

0 d×
------------ 0

0
--- Φ= = = =

The Multiplicative Nullity axiom [A15] says  for all transreal . The 
methods implement this axiom as follows.

Infinity times zero

∞ 0× 1
0
--- 0

1
---× 1 0×

0 1×
------------ 0

0
--- Φ= = = =

The Infinity Time Zero axiom [A16] says . The methods implement 
this axiom as follows.

Reciprocal of zero

0 1– 1 0÷ 1
1
--- 0

1
---÷ 1

1
--- 1

0
---× 1 1×

1 0×
------------ 1

0
--- ∞= = = = = =

The Reciprocal of Zero axiom [A20] says . The methods implement this 
axiom as follows.

Reciprocal of the opposite 
of infinity

∞–( ) 1– 1 ∞–÷ 1
1
--- 1–

0
------÷ 1

1
--- 0

1–
------× 1

1
--- 0–

1–( )–
--------------× 1

1
--- 0

1
---× 1 0×

1 1×
------------ 0

1
--- 0= = = = = = = =

The Reciprocal of the Opposite of Infinity axiom [A21] says . The 
methods implement this axiom as follows.

a b× b a×=
a b,

1 a× a= a

Φ a× Φ= a

∞ 0× Φ=

0 1– ∞=

∞–( ) 1– 0=
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Reciprocal of nullity

Φ 1– 1 Φ÷ 1
1
--- 0

0
---÷ 1

1
--- 0

0
---× 1 0×

1 0×
------------ 0

0
--- Φ= = = = = =

The Reciprocal of Nullity axiom [A22] says . The methods implement 
this axiom as follows.

Multiplicative associativ-
ity

a b c×( )×
na
da
-----

nb
db
-----

nc
dc
-----×⎝ ⎠

⎛ ⎞×
na
da
-----

nb nc×
db dc×
-----------------×

na nb nc××
db db dc××
-----------------------------

na nb×
db db×
-----------------

nc
dc
-----×= = = =

na
da
-----

nb
db
-----×⎝ ⎠

⎛ ⎞ nc
dc
-----×= a b×( ) c×=

The Multiplicative Associativity axiom [A12] says  for all 
transreal . The methods implement this axiom as follows.

Additive commutativity

a b+
na
0
-----

nb
0
-----+

na nb+
0

-----------------
nb na+

0
-----------------

nb
0
-----

na
0
-----+ b a+= = = = =

a b+
na
da
-----

nb
db
-----+

na db× da nb×+
da db×

-----------------------------------------
nb da× db na×+

db da×
----------------------------------------- b a+= = = =

The Additive Commutativity axiom [A2] says  for all transreal 
. 

Using the special addition method we have:

Using the general addition method we have:

This exhausts the addition methods which apply and, as both approaches confirm 
the axiom, the axiom is implemented by the methods.

Having demonstrated, once, how to perform a census of applicable methods, we 
can be less fussy in presenting the following proofs.

Additive infinity The Additive Infinity axiom [A5] says  for all transreal  except 
. We have already confirmed the exceptions in [A4] and [A11], using 

[A2] where necessary. It remains only to confirm the unexceptional cases.

Φ 1– Φ=

a b c×( )× a b×( ) c×=
a b c, ,

a b+ b a+=
a b c, ,

a ∞+ ∞= a
a ∞ Φ,–=
34



Pencil and Paper Methods
a ∞+ 1
0
--- 1

0
---+ 1 1+

0
------------ 2

0
--- 1

0
--- ∞= = = = =

a ∞+
na
da
----- 1

0
---+

na 0× da 1×+
da 0×

------------------------------------
0 da+

0
--------------

da
0
----- 1

0
--- ∞= = = = = =

Using the special addition method we have:

Using the general addition method we have:

Thus, the axiom is implemented by the methods.

Non-null subtraction of 
infinity

a ∞– 1–
0

------ 1
0
---– 1–

0
------ 1–

0
------+ 1– 1–( )+

0
------------------------ 2–

0
------ 1–

0
------ ∞–= = = = = =

a ∞–
na
da
----- 1

0
---–

na
da
----- 1–

0
------+

na 0× da 1–( )×+
da 0×

--------------------------------------------
0 d– a( )+

0
-----------------------

d– a
0

-------- 1
0
--- ∞= = = = = = =

The Non-null Subtraction of Infinity axiom [A10] says  for all 
transreal  except . The proof is similar to the proof just given, but we 
set it out for completeness.

We have already confirmed the exceptions in [A4] and [A11], using [A2] and 
[A9] where necessary. It remains only to confirm the unexceptional cases.

Using the special addition method we have:

Using the general addition method we have:

Thus, the axiom is implemented by the methods.

Bijectivity of reciprocal The Bijectivity of Reciprocal axiom [A5] says  for all transreal  
except . We have already confirmed the exception via [A21] and [A20]. 
We have already confirmed the case  via [A22]. We now confirm the 
remaining cases.

a ∞– ∞–=
a a ∞ Φ,=

a 1–( )
1–

a= a
a ∞–=

a Φ=
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a 1–( )
1–

1 a÷( ) 1– 1 1 a÷( )÷ 1
1
--- 1

1
--- n

d
---÷⎝ ⎠

⎛ ⎞÷ 1
1
--- 1

1
--- d

n
---×⎝ ⎠

⎛ ⎞÷ 1
1
--- 1 d×

1 n×
------------⎝ ⎠

⎛ ⎞÷= = = = =

1
1
--- d

n
---÷= 1

1
--- n

d
---× 1 n×

1 d×
------------ n

d
--- a= = = =

When  we have:

Note that for  the sign of the denominator propagates to the numerator 
without loss of information when computing reciprocals.

Positive

∞ a× 1
0
--- n–

d
------× 1 n–( )×

0 d×
-------------------- n–

0
------ ∞–= = = =

∞ a× 1
0
--- n

d
---× 1 n×

0 d×
------------ n

0
--- ∞= = = =

The Positive axiom [A23] says . There are four cases to 
consider: . However, the axiom is already confirmed for 

 via [A15] and [A13]. It is also confirmed for  by [A16]. This leaves 
two cases. Taking  these are as follows.

When  we have:

When  we have:

This confirms the axiom.

Negative The Negative axiom [A24] says . This is already confirmed 
by the proof just given, using [A27] where necessary.

Quadrachotomy

∞ ∞–× 1
0
--- 1–

0
------× 1 1–( )×

0
-------------------- 1–

0
------ ∞ 0 ∞–>⇔–= = = =

The Quadrachotomy axiom [A30] says that exactly one of these four relations 
holds for all transreal : , , , . Part of this, the trichotomy 
axiom, holds for all real : , , . Part of this,  holds, 
trivially, for . Quadrachotomy holds for  via [A25] and [A23]. It 
remains only to show that quadrachotomy holds for . Applying [A24] we see:

Hence, quadrachotomy applies to . This completes the proof.

∞ a ∞≤<–

a ∞–>

∞ a× ∞ a 0>⇔=
a 0 a,< 0 a 0 a,>, Φ= =

a Φ= a 0=
n 0>

a 0<

a 0>

∞ a× ∞– a 0>⇔=

a a 0< a 0= a 0> a Φ=
a a 0< a 0= a 0> a Φ=

a Φ= ∞
∞–

∞–
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Additive associativity

a b c+( )+
na
da
-----

nb
db
-----

nc
dc
-----+⎝ ⎠

⎛ ⎞+
na
da
-----

nb dc× db nc×+
db dc×

----------------------------------------+= =

na db dc×× da nb dc× db nc×+( )×+
da db dc××

--------------------------------------------------------------------------------------------=

na db dc×× da nb dc×× da db× nc×+ +
da db dc××

---------------------------------------------------------------------------------------------------=

a b+( ) c+
na
da
-----

nb
db
-----+⎝ ⎠

⎛ ⎞ nc
dc
-----+

na db× da nb×+
da db×

-----------------------------------------
nc
dc
-----+= =

dc na db× da nb×+( )× nc da db×( )×+
da db dc××

-------------------------------------------------------------------------------------------------=

na db dc×× da nb dc×× da db× nc×+ +
da db dc××

---------------------------------------------------------------------------------------------------=

The Additive Associativity axiom [A1] says  for all 
transreal . There are four, high level, cases to consider. Firstly, when the 
general addition rule applies to all of the sums. Secondly, when the special 
addition rule applies to all of the sums. It may also be the case that exactly two of 

 may be an infinity so that there are a further three cases: , 
, . However, the cases with  and 
 are symmetrical so only one of them need be tested. Thirdly, we 

choose to test . Finally, we test . However, if any of 
 then additive associativity holds via [A4] so that it only remains to 

test cases involving real numbers and signed infinities. The third and fourth, high 
level, cases both split into four cases so that there are a total of ten cases to test.

Now that the reader has had some practice using the pencil and paper methods, 
we apply several of the methods in a single reduction of an equation. We are 
similarly unfussy in future work.

First, using the general addition method everywhere:

and

Hence  in the first case.

a b c+( )+ a b+( ) c+=
a b c, ,

a b c, , a b, ∞ ∞,–{ }∈
a c, ∞ ∞,–{ }∈ b c, ∞ ∞,–{ }∈ a b, ∞ ∞,–{ }∈
b c, ∞ ∞,–{ }∈

a b, ∞ ∞,–{ }∈ a c, ∞ ∞,–{ }∈
a b c, , Φ=

a b c+( )+ a b+( ) c+=
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a b c+( )+
na
0
-----

nb
0
-----

nc
0
-----+⎝ ⎠

⎛ ⎞+
na
0
-----

nb nc+
0

-----------------+
na nb nc+ +

0
-----------------------------

na nb+
0

-----------------
nc
0
-----+= = = =

a b+( ) c+=

a b c+( )+ 1
0
--- 1

0
---

nc
dc
-----+⎝ ⎠

⎛ ⎞+ 1
0
---

1 dc× 0 nc×+
0 dc×

-----------------------------------+ 1
0
---

dc
0
-----+ 1

0
--- 1

0
---+ 1 1+

0
------------= = = = =

2
0
---= ∞=

a b+( ) c+ 1
0
--- 1

0
---+⎝ ⎠

⎛ ⎞ nc
dc
-----+ 1 1+

0
------------

nc
dc
-----+ 2

0
---

nc
dc
-----+ 1

0
---

nc
dc
-----+

1 dc× 0 nc×+
0 dc×

-----------------------------------= = = = =

dc
0
-----= 1

0
--- ∞= =

a b c+( )+ 1
0
--- 1–

0
------

nc
dc
-----+⎝ ⎠

⎛ ⎞+ 1
0
---

1– dc× 0 nc×+
0 dc×

--------------------------------------+ 1
0
---

d– c
0

--------+ 1
0
--- 1–

0
------+= = = =

1 1–( )+
0

--------------------= 0
0
--- Φ= =

a b+( ) c+ 1
0
--- 1–

0
------+⎝ ⎠

⎛ ⎞ nc
dc
-----+ 1 1–( )+

0
--------------------

nc
dc
-----+ 0

0
---

nc
dc
-----+ Φ= = = =

Second, using the special addition method everywhere:

Third, , that is, .

When  and  we have:

and

So additive associativity holds in this case.

When  and  we have:

and

So additive associativity holds in this case.

c ∞ ∞,– Φ,{ }∉ c R∈

a ∞= b ∞=

a ∞= b ∞–=
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a b c+( )+ 1–
0

------ 1
0
---

nc
dc
-----+⎝ ⎠

⎛ ⎞+ 1–
0

------
1 dc× 0 nc×+

0 dc×
-----------------------------------+ 1–

0
------

dc
0
-----+ 1–

0
------ 1

0
---+ 1– 1+

0
----------------= = = = =

0
0
---= Φ=

a b+( ) c+ 1–
0

------ 1
0
---+⎝ ⎠

⎛ ⎞ nc
dc
-----+ 1– 1+

0
----------------

nc
dc
-----+ 0

0
---

nc
dc
-----+ Φ= = = =

a b c+( )+ 1–
0

------ 1–
0

------
nc
dc
-----+⎝ ⎠

⎛ ⎞+ 1–
0

------
1– dc× 0 nc×+

0 dc×
--------------------------------------+ 1–

0
------

d– c
0

--------+ 1–
0

------ 1–
0

------+= = = =

1–( ) 1–( )+
0

----------------------------= 2–
0

------ ∞–= =

a b+( ) c+ 1–
0

------ 1–
0

------+⎝ ⎠
⎛ ⎞ nc

dc
-----+ 1–( ) 1–( )+

0
----------------------------

nc
dc
-----+ 2–

0
------

nc
dc
-----+ 1–

0
------

nc
dc
-----+= = = =

1– dc× 0 nc×+
0 dc×

--------------------------------------=
dc–
0

-------- 1–
0

------ ∞–= = =

When  and  we have:

and

So additive associativity holds in this case.

When  and  we have:

and

So additive associativity holds in this case. This completes the third, high level, 
case.

Fourth, , that is, . This case is similar to the third, high level, 
case, just proved. But, as these proofs have not been given before, there is some 
value in setting them out explicitly.

a ∞–= b ∞=

a ∞–= b ∞–=

b ∞ ∞,– Φ,{ }∉ b R∈
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a b c+( )+ 1
0
---

nb
dc
----- 1

0
---+⎝ ⎠

⎛ ⎞+ 1
0
---

nb 0× dc 1×+
dc 0×

-----------------------------------+ 1
0
---

dc
0
-----+ 1

0
--- 1

0
---+= = = =

1 1+
0

------------= 2
0
--- 1

0
--- ∞= = =

a b+( ) c+ 1
0
---

nb
dc
-----+⎝ ⎠

⎛ ⎞ 1
0
---+

1 dc× 0 nb×+
0

----------------------------------- 1
0
---+

dc
0
----- 1

0
---+ 1

0
--- 1

0
---+= = = =

1 1+
0

------------= 2
0
--- 1

0
--- ∞= = =

a b c+( )+ 1
0
---

nb
db
----- 1–

0
------+⎝ ⎠

⎛ ⎞+ 1
0
---

nb 0× db 1–( )×+
db 0×

--------------------------------------------+ 1
0
---

d– b
0

--------+ 1
0
--- 1–

0
------+= = = =

1 1–( )+
0

--------------------= 0
0
--- Φ= =

a b+( ) c+ 1
0
---

nb
db
-----+⎝ ⎠

⎛ ⎞ 1–
0

------+
1 db× nb 0×+

0 db×
------------------------------------ 1–

0
------+

db
0
----- 1–

0
------+ 1

0
--- 1–

0
------+= = = =

1 1–( )+
0

--------------------= 0
0
--- Φ= =

a b c+( )+ 1–
0

------
nb
db
----- 1

0
---+⎝ ⎠

⎛ ⎞+ 1–
0

------
nb 0× db 1×+

db 0×
------------------------------------+ 1–

0
------

db
0
-----+ 1–

0
------ 1

0
---+= = = =

1– 1+
0

----------------= 0
0
--- Φ= =

When  and  we have:

and

So additive associativity holds in this case.

When  and  we have:

and

So additive associativity holds in this case.

When  and  we have:

a ∞= c ∞=

a ∞= c ∞–=

a ∞–= c ∞=
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a b+( ) c+ 1–
0

------
nb
db
-----+⎝ ⎠

⎛ ⎞ 1
0
---+

1– db× 0 nb×+
0 db×

--------------------------------------- 1
0
---+

db–
0

-------- 1
0
---+ 1–

0
------ 1

0
---+= = = =

1– 1+
0

----------------= 0
0
--- Φ= =

a b c+( )+ 1–
0

------
nb
dc
----- 1–

0
------+⎝ ⎠

⎛ ⎞+ 1–
0

------
nb 0× dc 1–( )×+

dc 0×
-------------------------------------------+ 1–

0
------

d– c
0

--------+ 1–
0

------ 1–
0

------+= = = =

1–( ) 1–( )+
0

----------------------------= 2–
0

------ 1–
0

------ ∞–= = =

a b+( ) c+ 1–
0

------
nb
dc
-----+⎝ ⎠

⎛ ⎞ 1–
0

------+
1– dc× 0 nb×+

0
--------------------------------------- 1–

0
------+

d– c
0

-------- 1–
0

------+ 1–
0

------ 1–
0

------+= = = =

1–( ) 1–( )+
0

----------------------------= 2–
0

------ 1–
0

------ ∞–= = =

and

So additive associativity holds in this case.

When  and  we have:

and

So additive associativity holds in this case. This completes the fourth, high level, 
case and completes the entire proof.

Distributivity

a b c+( )×
na
da
-----

nb
0
-----

nc
0
-----+⎝ ⎠

⎛ ⎞×
na
da
-----

nb nc+
0

-----------------×= =

The Distributivity axiom [A31] says, when  are transreal it is the case that 
.

Distributivity holds when  are real. If any of  then distributivity 
holds via [A4]. It remains to test the cases where at least one of  is infinite 
and the remaining terms, if any, are real.

First, suppose that  is real.

When the special method of addition applies we have:

a ∞–= c ∞–=

a b c, ,
a b c+( )× a b×( ) a c×( )+  : = a ∞±=( ) b( )sgn c( )sgn≠( ) b c+ 0 Φ,≠( )∧ ∧( )¬

a b c, , a b c, , Φ=
a b c, ,

a
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na
da
-----

nb nc+
0

-----------------×
na nb nc+( )×

da 0×
---------------------------------

na nb× na nc×+
0

----------------------------------------= =

a b×( ) a c×( )+
na
da
-----

nb
0
-----×⎝ ⎠

⎛ ⎞ na
da
-----

nc
0
-----×⎝ ⎠

⎛ ⎞+
na nb×
da 0×
-----------------

na nc×
da 0×
-----------------+

na nb×
0

-----------------
na nc×

0
-----------------+= = =

na nb×
0

-----------------
na nc×

0
-----------------+

na n× b na nc×+
0

----------------------------------------=

a b c+( )×
na
da
-----

nb
0
-----

nc
dc
-----+⎝ ⎠

⎛ ⎞×
na
da
-----

nb dc× 0 nc×+
0 dc×

--------------------------------------×
na
da
-----

nb dc×
0

-----------------×
na n× b dc×

da 0×
-----------------------------= = = =

na n× b
0

-----------------=

a b×( ) a c×( )+
na
da
-----

nb
0
-----×⎝ ⎠

⎛ ⎞ na
da
-----

nc
dc
-----×⎝ ⎠

⎛ ⎞+
na nb×
da 0×
-----------------

na nc×
da dc×
-----------------+

na nb×
0

-----------------
na nc×
da dc×
-----------------+= = =

na nb× da dc×× 0 na nc××+
0 da dc××

-------------------------------------------------------------------------=
na nb× da dc××

0
----------------------------------------

na nb×
0

-----------------= =

This distributes when . Otherwise we continue as follows:

and

This distributes when  or . Otherwise we continue as 
follows:

So distributivity holds in this case.

When the general method of addition applies, exactly one of  or , 
but as the equations are symmetrical in  we need test only one of them:

and

So distributivity holds in this case. This completes the first, high level, case 
where  is real.

nb nc+
0

----------------- 0
0
---=

na nb×
0

----------------- 0
0
---=

na nc×
0

----------------- 0
0
---=

b ∞±= c ∞±=
b c,

a
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a b c+( )× ∞± 0× 1±
0

------ 0
1
---× 1± 0×

0 1×
--------------- 0

0
---= = = =

a b×( ) a c×( )+ 1±
0

------
nb
db
-----×⎝ ⎠

⎛ ⎞ 1±
0

------
n– b

db
--------×⎝ ⎠

⎛ ⎞+
1± nb×

0 db×
------------------

1± n– b( )×
0 db×

--------------------------+
n± b
0

---------
n+− b
0

---------+= = =

n± b
0

---------
n+− b
0

---------+
n± b n+− b+

0
------------------------ 0

0
---= =

a b c+( )× 1±
0

------ 1±
0

------ 1+−
0

------+⎝ ⎠
⎛ ⎞× 1±

0
------ 1±( ) 1+−( )+

0
-----------------------------+ 1±

0
------ 0

0
---+ 1± 0× 0 0×+

0 0×
---------------------------------- 0

0
---= = = = =

a b×( ) a c×( )+ 1±
0

------ 1±
0

------×⎝ ⎠
⎛ ⎞ 1±

0
------ 1+−

0
------×⎝ ⎠

⎛ ⎞+ 1±
0

------ 1+−
0

------+ 1±( ) 1+−( )+
0

----------------------------- 0
0
---= = = =

The remaining cases all have .

When  we have, without loss of generality,  and :

and

This distributes when . Otherwise we continue as follows:

So distributivity holds in this case. This confirms the part of the guarding clause 
which says .

When  we have, without loss of generality,  so that  
when . In the case we are examining,  regardless of the signs of 

. Now:

and

So distributivity holds in this case. This confirms the part of the guarding clause 
which says .

a ∞±=

b c+ 0= c b–= b c R∈,

n± b
0

--------- 0
0
---=

b c+ 0≠

b c+ Φ= b c–= c ∞+−=
b ∞±= a ∞±=

b c,

b c+ Φ≠
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a b c+( )× 1±
0

------
n± b

db
---------

n± c
dc

--------+⎝ ⎠
⎛ ⎞× 1±

0
------

n± b dc× db n± c×+
db db×

-----------------------------------------------×= =

1± n± b dc× db n± c×+( )×
0 d× b db×

-----------------------------------------------------------------=
1± n± b dc× db n± c×+( )×

0
-----------------------------------------------------------------=

1± n± b n± c+( )×
0

-----------------------------------------=
1± n± b×( ) 1± n± c×( )+

0
-----------------------------------------------------------=

a b×( ) a c×( )+ 1±
0

------
n± b

db
---------×⎝ ⎠

⎛ ⎞ 1±
0

------
n± c

dc
--------×⎝ ⎠

⎛ ⎞+
1± n± b×
0 db×

---------------------
1± n± c×
0 dc×

---------------------+= =

1± n± b×
0

---------------------
1± n± c×

0
---------------------+=

1± n± b×( ) 1± n± c×( )+
0

-----------------------------------------------------------=

a b c+( )× 1±
0

------
nb
db
----- 0

1
---+⎝ ⎠

⎛ ⎞× 1±
0

------
nb 1× db 0×+

db 1×
------------------------------------× 1±

0
------

nb
db
-----×

1± nb×
0 db×

------------------
1± nb×

0
------------------= = = = =

1±
0

------=

When  we have, without loss of generality,  and 

 such that . In the case we are examining,  regardless of 

the signs of . Now:

and

So distributivity holds in this case. This confirms the part of the guarding clause 
which says .

It remains to show that the guarding clause does guard against non-distributivity 
in every case where . Without loss of 
generality, we may choose . There are then three cases to consider.

When  is positive and  is zero:

and

b( )sgn c( )sgn= b
n± b

db
---------=

c
n± c

dc
--------= nb nc, 0> a ∞±=

b c,

b( )sgn c( )sgn≠

a ∞±=( ) b( )sgn c( )sgn≠( ) b c+ 0 Φ,≠( )∧ ∧
b c>

b c
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a b×( ) a c×( )+ 1±
0

------
nb
db
-----×⎝ ⎠

⎛ ⎞ 1±
0

------ 0
1
---×⎝ ⎠

⎛ ⎞+
1± nb×

0 db×
------------------ 1± 0×

0 1×
---------------+

1± nb×
0

------------------ 0
0
---+= = =

1±
0

------ 0
0
---+= 1± 0× 0 0×+

0 0×
---------------------------------- 0

0
---= =

a b c+( )× a d× 1±
0

------
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-----×

1± nd×
0 dd×

------------------
1± nd×

0
------------------ 1±

0
------= = = = =

a b×( ) a c×( )+ 1±
0

------
nb
db
-----×⎝ ⎠

⎛ ⎞ 1±
0

------
n– c

dc
--------×⎝ ⎠

⎛ ⎞+
1± nb×

0 db×
------------------

1± n– c×
0 dc×

---------------------+= =

1± nb×
0

------------------
1± n– c×

0
---------------------+= 1±

0
------ 1+−

0
------+ 1±( ) 1+−( )+

0
----------------------------- 0

0
---= = =

a b c+( )× 1±
0

------ 0
1
---

n– c
dc

--------+⎝ ⎠
⎛ ⎞× 1±

0
------

0 dc× 1 n– c×+
1 dc×

--------------------------------------× 1±
0

------
n– c

dc
--------×

1± n– c×
0 dc×

---------------------= = = =

1± n– c×
0

---------------------= 1+−
0

------=

a b×( ) a c×( )+ 1±
0

------ 0
1
---×⎝ ⎠

⎛ ⎞ 1±
0

------
n– c

dc
--------×⎝ ⎠

⎛ ⎞+ 1± 0×
0 1×

---------------
1± n– c×
0 dc×

---------------------+ 0
0
---

1± n– c×
0

---------------------+= = =

0
0
--- 1+−

0
------+= 0 0× 0 1+−×+

0 0×
---------------------------------- 0

0
---= =

So distributivity does not hold in this case, as required.

When  is positive and  is negative we may choose :

and

So distributivity does not hold in this case, as required.

When  is zero and  is negative:

and

So distributivity does not hold in this case, as required. This completes the proof.

b c d b c+= 0>

b c
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Proof that the pencil and 
paper methods implement 
nothing but the axioms of 
transreal arithmetic

We have just shown that the pencil and paper methods do implement the axioms 
of transreal arithmetic, but now we want to know that everything that the 
methods calculate, can be obtained from the axioms. Proving this from first 
principles would be much more work than we undertook in the previous section, 
but we can take a short cut. We could perform a census of how all of the 
arithmetical operations of multiplication, division, addition, and subtraction 
apply to any transreal arguments; and of how the predicates positive and negative
apply to any transreal arguments. But the methods tell us that division is 
multiplication by the reciprocal and that subtraction is addition of the opposite so 
we need not perform a census of division and subtraction. Further, we can derive 
positive and negative from the relation greater than. This means we can conduct 
the census in just three tables for: multiplication, addition, and greater than.
See.5 In the tables  is a positive, rational number;  is a positive numerator; and 

 is a non-negative denominator. The letter T stands for True, F for False, and C
means Conditionally true or false, identically with the case for real arithmetic.

The work of constructing the tables is simply the work of performing the 
requisite arithmetic using the methods. To be fair, this is still more work than the 
we did in the previous section, but at least the calculations are very simple. The 
actual work is left as an exercise for the reader.

Table 3.1: Multiplication of transreal numbers

q n
d

n1 d1⁄ n2 d2⁄×
q2– 0 q2 ∞– ∞ Φ

n2–( ) d2⁄ 0 1⁄ n2 d2⁄ 1–( ) 0⁄ 1 0⁄ 0 0⁄

q1– n1–( ) d1⁄ q3 0 q3– ∞ ∞– Φ

0 0 1⁄ 0 0 0 Φ Φ Φ

q1 n1 d1⁄ q3– 0 q3 ∞– ∞ Φ

∞– 1–( ) 0⁄ ∞ Φ ∞– ∞ ∞– Φ

∞ 1 0⁄ ∞– Φ ∞ ∞– ∞ Φ

Φ 0 0⁄ Φ Φ Φ Φ Φ Φ
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Table 3.2: Addition of transreal numbers

Table 3.3: Greater than

Having constructed the tables by using the methods, we now need to show that 
every entry of the table can be derived from the axioms. Again, this is a very 
great deal of work, but it has already been done for us.6 The reader who wishes to 

C F F T F F

T F F T F F

T T C T F F

F F F F F F

T T T T F F

F F F F F F

n1 d1⁄ n2 d2⁄+
q2– 0 q2 ∞– ∞ Φ

n2–( ) d2⁄ 0 1⁄ n2 d2⁄ 1–( ) 0⁄ 1 0⁄ 0 0⁄

q1– n1–( ) d1⁄ q3– q1– q3± ∞– ∞ Φ

0 0 1⁄ q2– 0 q2 ∞– ∞ Φ

q1 n1 d1⁄ q3± q1 q3 ∞– ∞ Φ

∞– 1–( ) 0⁄ ∞– ∞– ∞– ∞– Φ Φ

∞ 1 0⁄ ∞ ∞ ∞ Φ ∞ Φ

Φ 0 0⁄ Φ Φ Φ Φ Φ Φ

n1 d1⁄ n2 d2⁄>
q2– 0 q2 ∞– ∞ Φ

n2–( ) d2⁄ 0 1⁄ n2 d2⁄ 1–( ) 0⁄ 1 0⁄ 0 0⁄

q1– n1–( ) d1⁄

0 0 1⁄

q1 n1 d1⁄

∞– 1–( ) 0⁄

∞ 1 0⁄

Φ 0 0⁄
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see how theorems are derived from the axioms of transreal arithmetic is invited to 
read.6

Verifying alternative meth-
ods

Now that we know that the above tables follow from the axioms, this gives us a 
simpler way of verifying that any methods we care to develop do implement all 
and only the axioms of transreal arithmetic. First, show that division is 
multiplication by the reciprocal and that subtraction is addition of the opposite. 
Second, verify that the new methods give the same results as shown in the tables. 
Third, verify that the new methods do not give any results that are not in the 
tables.

Conclusion The chapter starts by giving, in a few pages, pencil and paper methods for 
performing transreal arithmetic. This section also indicates how ordinary 
arithmetic can be taught which outlaws division by zero, how ordinary arithmetic 
can be taught so that it does not obstruct the learning of division by zero, and how 
division by zero can be taught. This gives teachers the flexibility to outlaw 
transreal arithmetic or to encourage it in school teaching. If the majority of 
teachers use their existing skills, but stop using methods which obstruct division 
by zero, and specialist mathematics teachers teach division by zero, then the 
transfer from teaching ordinary arithmetic to teaching transreal arithmetic can be 
made smoothly. But this transition should only be undertaken in a school if and 
when its teachers are comfortable with transreal arithmetic. But, as transreal 
arithmetic contains ordinary arithmetic, and is consistent with it, it could be 
taught to just the most able pupils as a method of deepening their understanding 
of ordinary mathematics. Again, only a confident and committed teacher should 
undertake the teaching of transreal arithmetic in this way.

The rest of the chapter proves that the pencil and paper methods work. But the 
methods are not necessarily the most efficient, nor the easiest to teach to children, 
nor the methods with the least difference from what is currently taught in schools. 
It will take some engagement with teachers and pupils to be sure that the methods 
given are good ones. All I can say is that they are the best I have developed so far. 
But note that I am dyslexic. My needs and coping strategies are not necessarily 
indicative of how the majority of people do arithmetic.

The section which shows how the methods implement the axioms of transreal 
arithmetic is rather long. I could make the derivations shorter by using more 
compact notation and by taking bigger steps, but, in my view, this would be a 
hindrance to the reader who is not already fluent in transreal arithmetic. I believe 
the constant repetition of derivations is a useful pedagogic device, all be it a 
rather dull one. On the other hand, I should probably make the section longer by 
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leading the reader more gently through the rather complicated branching 
structure of some of the proofs.

I welcome feedback from the reader on all of the above points. And I especially 
welcome feedback that corrects any errors I have made. Now, let me share a little 
personal history with you.

The youngest person to 
learn transreal arithmetic

A woman came to work at the University last week. She met me on her second 
day and we transacted our business. At the end of the meeting she asked how I 
divide by zero so, in the next half hour, I showed her the methods that I have now 
written up in this chapter. She went home and taught the methods to her eleven 
year old son that evening. He went to school the next day and started to teach the 
methods to his mathematics teacher, but ran out of time in a single lesson. The 
teacher could not believe the methods, but could find no fault in them. To date, 
this eleven year old is the youngest person to learn transreal arithmetic.
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CHAPTER 4 The Graph of the Reciprocal
Introduction A great many people have attempted to criticise transreal arithmetic by exploiting 
the asymmetry that the reciprocal of both positive and negative infinity is zero, 
but the reciprocal of zero is positive infinity and not negative infinity. This is not, 
as many critics suppose, a bug in the specification of transreal arithmetic, it is a 
feature. The asymmetry plays an important role in retaining the maximum 
possible amount of information about the sign and magnitude of numbers. All of 
the approaches, promulgated by my critics, preserve no more information than 
transreal arithmetic does, and many of them lose information.

Bottom Bottom, , has several uses in mathematics. It is used as the first element of any 
type of thing. For example, the bottom element of the non-negative integers is 
zero, the bottom element of the positive integers is one, the bottom element of 
men is Adam (citing biblical sources) and the bottom element of bananas is the 
very first banana that ever grew. Thus, bottom is a non-negative integer, a 
positive integer, a man, a banana, and everything else that has a type.

A second use of bottom is as an element in logic which means that no information 
is known about a thing.14 For example, if a calculation on the non-negative 
integers produces  as the result, it means that no information is known 
about the number . It might be that  is zero, one, two, three, or any non-
negative integer at all, including being just bottom. But if one failed to specify 
that the domain of interest is non-negative integers, then  might be a man, a 

⊥

x ⊥=
x x

x
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Figure 4.1: Bottom as the reciprocal of zero

0

⊥

⊥

??

f x( ) 1
x
---=

f x( ) 1
x
---=

banana, or any type of thing. When bottom is used in arithmetic, it is quite 
common to give it ordering properties that do not disturb the ordinary ordering of 
numbers, and to define that it is of type number and of type error. This allows 
bottom to be used as a number everywhere in arithmetic and to be treated as an 
error in computer programs.

Very commonly, authors do not bother to say what type(s) bottom has so that one 
must read into their work a sensible interpretation. In what follows, we refrain 
from saying what type(s) bottom has and leave the reader to interpret our use of 
bottom.

Bottom can be defined in various ways in arithmetic. One popular way is to 
define that  for all numbers . This leads to the graph of the reciprocal 
sketched below.

The graph is drawn in two pieces, one in the first quadrant of the Cartesian co-
ordinate frame (top-right) and the other in the third quadrant (bottom-left). Both 
pieces are governed by the equation . At  we have 

. We are free to choose whether bottom is a point high up 
on the -axis, the vertical axis, or low down, or both, or neither. We simply have 
no information about its position. If we want to say that the graph of  is 
continuous at zero, so that it is made out of a single piece, joined at a single point, 
bottom, then we are free to do so. But we are equally free to say that the graph 
falls into two, or more, pieces. We could say that the graph of  falls into four 
pieces: the arc in the first quadrant, the arc in the third quadrant, bottom high up 

⊥ n 0⁄= n

f x( ) 1 x⁄= x 0=
f x( ) f 0( ) 1 0⁄ ⊥= = =

y
f x( )

f x( )
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in the graph, and bottom low down in the graph. We have a very great deal of 
freedom to say where bottom lies.

If we use bottom, we are still free to use an unsigned infinity, , two signed 
infinities, , or any number of infinities or other things. Depending on the 
choices we make, we may say that the graph of  asymptotes to zero as it 
moves to the right. That is to say, it gets closer and closer to zero, but never 
arrives at zero. Or we may say that it does arrive at zero. And we may specify that 

 has the same, or different, behaviour at the left and right of the graph. We 
could even specify that the graph arrives at bottom at the extreme left and right. 
This is a perfectly symmetrical solution, but the symmetry is bought by throwing 
away information about the sign and magnitude of  at  and at the 
extreme right-hand and extreme left-hand values of , whatever they may be. 
Quite simply, bottom gives no information. But we can retain some information 
about the magnitude of a number by using an unsigned infinity.

Unsigned infinity

Figure 4.2: Unsigned infinity as the reciprocal of zero

0

∞

∞

00

f x( ) 1
x
---=

f x( ) 1
x
---=

A popular way to use an unsigned infinity is to define  for all non-zero 
numbers, . We are then free to define . The figure above shows a 
sketch of the graph of  as one piece. The arc in the first quadrant is 
connected to the arc in the second quadrant at the unsigned infinity, . The graph 
at  looks like it is in two places, but we define that unsigned infinity is one 
place.

∞
∞ +∞,–

f x( )

f x( )

f x( ) x 0=
x

∞ n 0⁄=
n 1 ∞⁄ 0=

f x( ) 1 x⁄=
∞

x 0=
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As we move to the extreme right,  and  so that the 
arc makes contact with the -axis of the co-ordinate frame. Similarly, at the 
extreme left,  and  so that the arc also 
makes contact with the -axis of the co-ordinate frame here. Note that  
because infinity is unsigned. In the same way,  because zero is unsigned.

With this arrangement we know that  has a very large magnitude, but 
we do not know anything about its sign. We do not know if infinity is positive, 
negative, or whether it has any sign at all. This infinity is useful in some areas of 
mathematics, but it does not give us as much information about the reciprocal as 
we would get by using a signed infinity.

Signed infinity

Figure 4.3: Signed infinity as the reciprocal of zero

0

∞

∞–

00

f x( ) 1
x
---=

g x( ) 1–
x–

------=

In what follows, we write positive infinity without a sign, , and negative 
infinity with a sign, .

The graph of the reciprocal is in two pieces. The piece in the first quadrant is 
governed by the equation . The piece in the third quadrant is governed 
by . Using transreal arithmetic we have:

[E 4.1]

[E 4.2]

x ∞= f x( ) f ∞( ) 1 ∞⁄ 0= = =
x

x ∞–= f x( ) f ∞–( ) f ∞( ) 1 ∞⁄ 0= = = =
x ∞– ∞=

0– 0=

f 0( ) ∞=

∞
∞–

f x( ) 1 x⁄=
g x( ) 1 x–( )⁄–=

f 0( ) 1
0
--- ∞= =

f ∞( ) 1
∞
---- 1

1
--- 1

0
---÷ 1

1
--- 0

1
---× 0

1
--- 0= = = = =
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The Graph of the Reciprocal
[E 4.3]

[E 4.4]

Thus, we have complete knowledge of the reciprocal of  for all real numbers , 
extended by the signed infinities . But we can obtain even more 
information.

Let us define the reciprocal, , as follows.

[D1]

Here  means that  is not less than zero. This may be because  or 
. Similarly  means that  is not greater than zero. This may be 

because  or .

We have already examined the cases  when , and  
when . It only remains to examine the cases when .

[E 4.5]

[E 4.6]

In transreal arithmetic the sign of nullity is nullity and the magnitude of nullity is 
nullity so we now have complete knowledge of the sign and magnitude of the 
reciprocal of any transreal number.

Conclusion One must take care to define the reciprocal so that it applies to all of the transreal 
numbers. See definition [D1]. When this is done the reciprocal of every transreal 
number can be found. Which is to say that the transreciprocal is a total function 
that preserves full knowledge of the sign and magnitude of numbers. It is simply 
not sufficient to take the real-number definition of the reciprocal and to adopt this 
without change. Real numbers do not deal with infinite and non-finite objects so 
we cannot reasonably assume that real-number definitions will continue to hold 

g 0( ) 1–
0–

------ 1–
0

------ ∞–= = =

g ∞–( ) 1–
∞–( )–

--------------- 1–
∞
------ 1–

1
------ 1

0
---÷ 1–

1
------ 0

1
---× 0

1
--- 0= = = = = =

x x
∞ ∞,–

r

r x( )

1
x
---  :  x 0</

1–
x–

------  :  x 0\>⎩
⎪
⎨
⎪
⎧

=

x 0</ x x 0≥
x Φ= x 0\> x

x 0≤ x Φ=

r x( ) f x( )= x 0≥ r x( ) g x( )=
x 0≤ x Φ=

r Φ( ) f Φ( ) 1
Φ
---- 1

1
--- 0

0
---÷ 1

1
--- 0

0
---× 0

0
--- Φ= = = = = =

r Φ( ) g Φ( ) 1–
Φ–

------- 1–
Φ
------ 1–

1
------ 0

0
---÷ 1–

1
------ 0

0
---× 0

0
--- Φ= = = = = = =
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for all transreal numbers. We must be prepared to extend real definitions to 
transreal definitions before we use them to solve mathematical problems.

Exercises 4.1 There are many reciprocals that use bottom. Choose one of these and define 
a function that maps the transreciprocal onto the reciprocal of your choice. 
In other words, show how to cripple the transreciprocal so that it is a recip-
rocal with bottom.

See Answer  4.1

4.2 There are many reciprocals that use an unsigned infinity. Choose one of 
these and define a function that maps the transreciprocal onto the reciprocal 
of your choice. In other words, show how to cripple the transreciprocal so 
that it is a reciprocal with an unsigned infinity.

See Answer  4.2

4.3 The following argument2 is sometimes presented as a fallacious counter-
proof of the possibility of dividing by zero. Say what is wrong with it.

Figure 4.4: Fallacious reciprocal

At first glance it seems possible to define a 0⁄  by considering the limit a b⁄

as b  approaches zero.

0
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The Graph of the Reciprocal
For any positive  it is known that:

  
b 0+→
lim a

b
--- +∞=

For any negative a  it is known that:

  
b 0+→
lim a

b
--- ∞–=

Therefore a 0⁄  is defined to be +∞  when a  is positive and as ∞–  when a  
is negative.

However, taking the limit from the right is arbitrary. The limits could be 
taken from the left. In which case a 0⁄  is defined to be ∞–  when a  is posi-
tive and as   +∞  when a  is negative.

This can be further illustrated using the following equation (when it is 
assumed that several properties of the real numbers apply to the infinities)

+∞ 1
0
--- 1

0–
------ 1

0
---– ∞–= = = =

Which leads to +∞ ∞–=  which would be a contradiction with the standard 
definition of the extended real-number line. The only workable extension is 
to introduce an unsigned infinity.

Furthermore there is no obvious definition of 0 0⁄  that can be derived by 
considering the limit of a ratio.

The limit:

 
a b,( ) 0 0,( )→

lim a
b
---

does not exist.

a
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Limits of the form

f x( )
g x( )
----------

x 0→
lim

in which both of f x( )  and g x( )  approach zero, as x  approaches zero, may 
equal any real or infinite value, or may not exist at all, depending on the 
particular functions f  and g . These and other, similar, facts show that 0 0⁄  
cannot be well defined as a limit.

See Answer  4.3
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CHAPTER 5 NaN 
Introduction Most of the world’s general purpose computers use the IEEE standard for 
floating-point arithmetic.12 This standard allows a computer to divide any 
number by zero so it is legitimate to ask how transreal arithmetic differs from 
IEEE floating-point arithmetic. Let us begin by examining the views of those 
who believe that the two approaches are very similar, before examining the 
standard for ourselves, and coming to a conclusion about which approach is more 
satisfactory.

Wikipedia As I write this chapter, in April 2009, Wikipedia has a biographical entry on me.3
This entry argues that my proposals are very close to those of the IEEE standard. 
This view is entirely mistaken, but it is a useful exercise to examine it in detail.

I have deleted hypertext links from this, and subsequent, quotations from 
Wikipedia, and have corrected spellings that are incorrect in both British and 
American English, but I have not modified the punctuation of the quotations. I 
have changed the style of mathematical symbols so that it is consistent with the 
rest of this book.

Anderson quickly gained publicity in December 2006 in 
the United Kingdom when the regional BBC South Today 
reported his claim of “having solved a 1200 year old 
problem”, namely that of division by zero. However, 
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commentators quickly pointed out that his ideas are just a 
variation of the standard IEEE 754 concept of NaN (Not a 
Number), a datum that has been commonly employed on 
computers in floating point arithmetic for many years. Dr. 
Anderson defended the criticism of his claims on BBC 
Berkshire on 12 December 2006, saying, “If anyone 
doubts me I can hit them over the head with a computer 
that does it.”

The quotation begins:

Anderson quickly gained publicity in December 2006 in 
the United Kingdom when the regional BBC South Today 
reported his claim of “having solved a 1200 year old 
problem”, namely that of division by zero.

This is substantially true. I did gain a great deal of publicity, very quickly, when 
the BBC’s regional, television, news program South Today reported my visit to a 
local school and this was picked up by the BBC’s global, television, news 
programme BBC 24. There were 90 000 hits on my web site that day, with 
another 10 000 hits the next day. In the following fortnight 40 000 people 
downloaded a copy of the paper giving the axioms of transreal arithmetic,6 a 
figure which continues to grow by about 500 downloads per month. In a typical 
month the site gets 3 000 hits, but this jumps to 10 000 hits per month when I 
publish something new. The quotation correctly reports my words, but it is 
arguable, on historical grounds, whether people have sought to divide by zero for 
1200 or 1300 years. Either way, the historical fault is mine. I was being cautious 
in the radio programme.

However, commentators quickly pointed out that his ideas 
are just a variation of the standard IEEE 754 concept of 
NaN (Not a Number), a datum that has been commonly 
employed on computers in floating point arithmetic for 
many years.

It is true that commentators, including some of my friends, did say this. But I 
argue, in this chapter, that transreal arithmetic is a radical departure from the 
IEEE standard, both in its mathematical content and in its consequences for 
theoretical and practical computing. It should be noted, however, that the 
quotation is wrong on one point. NaN is not a datum. It is a set of data, a point to 
which I return, below.
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Dr. Anderson defended the criticism of his claims on BBC 
Berkshire on 12 December 2006, saying, “If anyone 
doubts me I can hit them over the head with a computer 
that does it.”

It is true that I defended my claims, and I continue to do so. The quotation is, 
however, reported out of context. It was put to me that it is impossible to 
represent infinity with a binary code. This is false. For example, the IEEE 
standard does it.12 As I already had a computer that performed transreal 
arithmetic,7 it seemed quite reasonable, to me, to face my critics with a brute fact 
– here is a computer that does arithmetic on infinity with binary arithmetic. But 
no listener took me up my offer to see the computer (which was subsequently 
dismantled because its components were needed for a laboratory class). There 
are, however, several living witnesses who saw the computer in operation.

The Wikipedia article3 also says:

He has written two papers on division by zero and has 
invented what he calls the “Perspex machine”.

The number of papers continues to grow and I have, indeed, invented a computer 
that I call the Perspex machine. In future, I hope it will be on sale to the public, 
and that all general purpose computers will use transreal arithmetic.

Anderson claims that “mathematical arithmetic is 
sociologically invalid” and that IEEE floating-point 
arithmetic, with NaN, is also faulty.

I do, indeed, make these claims, and defend them in this chapter.

Anderson's transreal numbers were first mentioned in a 
1997 publication, and made well-known on the Internet in 
2006, but not accepted as useful by the mathematics 
community. These numbers are used in his concept of 
transreal arithmetic and the Perspex machine. According 
to Anderson, transreal numbers include all of the real 
numbers, plus three others: infinity ( ), negative infinity 
( ) and “nullity” ( ), a numerical representation of a 
non-number that lies outside of the affinely extended real 
number line. (Nullity, confusingly, has an existing 
mathematical meaning.)

∞
∞– Φ
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The reference to the 1997 publication4 is correct, in so far as it refers to the first 
mention of the point at nullity. Nullity is dealt with in a geometrical construction, 
and is produced as the solution to some equations, but it is not arithmetised until a 
later publication. As there are about 100 000 web pages on my work, dated 2006, 
and only my pages before that, it is correct to say that my work was made well 
know on the world wide web in 2006. The mathematics community certainly has 
not accepted the usefulness of the transreal numbers. I do not expect pure 
mathematicians to be concerned with usefulness; and it is entirely normal, and 
logically necessary, for applied mathematicians to lag behind the scientific fields, 
such as Computer Science, Physics and Chemistry, where their talents are 
applied. However, no professional mathematician, so far as I am aware, now 
challenges the correctness of transreal arithmetic. It is true that I say that positive 
infinity, negative infinity, and nullity are numbers. But I have never made the 
self-contradictory claim that the number nullity represents a non-number. Though 
I do claim that the number nullity lies off the extended, real-number line. It is true 
that nullity has other mathematical meanings, but so do many mathematical 
terms. For example, “zero” may be an integer, a rational number, a real number, a 
complex number, a quaternion, an octonion, an element of a ring, an element of a 
group, or an element of various other algebraic structures. Each of these different 
kinds of zero has some properties in common, but may have some properties that 
are not common. For example, some of these zeros are less than one, and some 
are not. This is not confusing to a mathematician, it is a consequence of the wide 
variety of, and interrelation between, mathematical concepts. But, if anyone can 
think of a better name than nullity or a better symbol than  then I will listen to 
their views.

Anderson intends the axioms of transreal arithmetic to 
complement the axioms of standard arithmetic; they are 
supposed to produce the same result as standard 
arithmetic for all calculations where standard arithmetic 
defines a result. In addition, they are intended to define a 
consistent numeric result for the calculations which are 
undefined in standard arithmetic, such as division by zero.

Correct.

In standard arithmetic, division of zero by zero is 
undefined. In calculus, it is an indeterminate form.

Correct.

Φ
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Transreal arithmetic resembles IEEE floating point 
arithmetic, a floating point arithmetic commonly used on 
computers. In IEEE floating point arithmetic, calculations 
such as zero divided by zero can produce a result, Not a 
Number (NaN), to which the standard arithmetic axioms 
do not apply (as it is not a number). IEEE floating point 
arithmetic, like transreal arithmetic, uses affine infinity 
(two separate infinities, one positive and one negative) 
rather than projective infinity (a single unsigned infinity, 
turning the number line into a loop). The IEEE standard 
extends standard arithmetic by defining the results of all 
arithmetic operations upon , , and NaN.

I deny that transreal arithmetic resembles IEEE floating-point arithmetic, and set 
out my denial in this chapter. The rest of the quotation is uncontentious, except 
for the last sentence:

The IEEE standard extends standard arithmetic by 
defining the results of all arithmetic operations upon , 

, and NaN.

If “all arithmetic operations” means the binary operations of addition, 
subtraction, multiplication, division, finding the remainder, ordering relations, 
and the unary operation of computing the square root of a non-negative object or 
minus zero, then the quotation is true. See,12 pages 7 and 11. The standard does 
not define an extension of unary negation, but in commentary on the standard, it 
notes that  (see,12 page 17). By contrast, it is a theorem of transreal 
arithmetic, which is lexically identical to a theorem of ordinary arithmetic, that 

. The IEEE standard extends the operation of taking the square root, 
extracting a remainder, rounding to integer, optionally rounding to some other 
precisions (see,12 page 10), and specifies various copying and testing predicates 
(see,12 especially page 11). But no other mathematical functions are extended. 
The standard is silent, for example, on how to find cube roots, how to find 
logarithms and exponents, how to compute trigonometric functions, or how to 
compute any mathematical function, other than those explicitly listed in the 
present paragraph, and in the 10 pages of the standard,12 pages 7 - 16, excluding 
front and back matter.

Loosely put, IEEE floating point arithmetic extends the 
(affinely) extended real number line to the set 

 and transreal arithmetic extends the 

∞– +∞

∞–
+∞

x 0 x–≠–

x– 0 x–=

R ∞– NaN, ∞,{ }∪
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(affinely) extended real number line to the set 
. IEEE floating point arithmetic 

approximates this set, defining a finite binary 
representation, for actual use in computers, that includes 
denormal numbers and negative zero. Transreal arithmetic 
has no standardized binary encoding for use in computers.

Why say, “loosely put?” This is an indication that what is about to be said is false. 
The quotation goes on to say that floating-point arithmetic does not deal with the 
set of real numbers, , but only with a finite subset of these numbers. I will allow 
this as a legitimate looseness in expression, but the claim that IEEE floating-point 
arithmetic is defined on the set  is contradicted by the correct 
claim that the standard defines an object . See,12 pages 12 and 13. The IEEE 
object , but  and  are different objects, for example,  but 

. In contrast, transreal arithmetic has  with  and  being 
the same object so that . Making this correction, by 
including the object negative zero, we now have that IEEE floating-point 
arithmetic is defined on the set , but this contains a 
category error. NaN is not an object, it is a set of objects. In 32-bit, single 
precision, floating-point arithmetic there are  NaN objects; 
and in single precision, extended arithmetic there are a minimum of 

 NaN objects; in 64-bit, double precision, arithmetic there 
are  NaN objects; and in double precision, 
extended, arithmetic there are at least  NaN
objects. The standard recommends,12 page 10, that all implementations of the 
standard should support the extended format at the highest precision of basic 
format that is supported. Making this correction, we now have that IEEE floating-
point arithmetic is defined on the set  with  being at least 

 on 32-bit machines, and, on 64-bit machines, being at least 
. Counting negative zero in with NaN this is 

exactly 4G differences in 32-bit arithmetic and 16E differences in 64-bit 
arithmetic. The standard defines that no NaN object is equal to any floating-point 
number, nor is it equal to any NaN object, including itself (see,12 page 12), so all 
of the NaN objects are distinct objects. By contrast, transreal arithmetic6 has 

 is a unique number, and . Speaking loosely, transreal arithmetic 
has eighteen quintillion differences from IEEE floating-point arithmetic.

As an aside, if anyone seriously maintains that NaN and nullity are the same 
thing, or even resemble each other, then I invite them to lend me £4,294,967,295 
and accept repayment, in full, with £1. I am willing to do this any number of 
times, with any number of people. But I am far more generous than this. I am 

R ∞– Φ ∞, ,{ }∪

R

R ∞– NaN, ∞,{ }∪
0–

0– 0= 0– 0 1 0÷ ∞=
1 0–( )÷ ∞–= 0– 0= 0– 0

1 0–( )÷ 1 0÷ ∞= =

R ∞– 0 NaN, ,– ∞,{ }∪

223 1– 8 388 607=

232 1– 4 294 967 295=
252 1– 4 503 599 627 370 495=

264 1– 18 446 744 073 709 551 615=

R ∞– 0 NaNi,– ∞, ,{ }∪ i
i 4 294 967 295=
i 18 446 744 073 709 551 615=

Φ 0 0⁄= Φ Φ=
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willing to nett £18,446,744,073,709,551,614 on a single trade, except that there is 
not this much money in the entire world, even when all the currencies in the 
world are converted to the pound sterling at their current rate. Has the penny 
dropped yet? NaN and nullity are very different things.

It is true that there is no standard, binary representation of the transreal numbers; 
but there are non-standard representations. For example, see.7 Perhaps, one day, 
transreal numbers will be standardised by the computing community.

Just as in IEEE floating point arithmetic, in transreal 
arithmetic, all calculations including infinity and nullity 
are axiomatically defined. In addition, several of the 
axioms of standard arithmetic are constrained so that they 
do not operate upon the extended members of the number 
set. Here are some identities in transreal arithmetic with 
the IEEE equivalents:

Correct. But the table3 is almost completely wrong. I have added the table legend.

Table 5.1:Fallacious comparison of Transreal versus IEEE floating-point arithmetic

Transreal 
arithmetic

IEEE floating-point 
arithmetic

 
i.e. applying unary nega-
tion to NaN yields NaN

+1 0÷ ∞= +1 +0÷ ∞=

1 0÷– ∞–= +1 0–÷ ∞–=

0 0÷ Φ= 0 0÷ NaN=

∞ 0× Φ= ∞ 0× NaN=

∞ ∞– Φ= ∞ ∞– NaN=

Φ a+ Φ= NaN a+ NaN=

Φ a× Φ= NaN a× NaN=

Φ– Φ= NaN– NaN=

Φ Φ TRUE⇒= NaN NaN FALSE⇒=
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The transreal column is correct with the usual reading of the mathematical 
symbols, but the IEEE floating-point column is incoherent. It uses at least three 
different, and incompatible, readings of the equality symbol, “=.” Following the 
Principle of Charity we try to make the best argument we can for the Wikipedia 
author. The first correction is to correct the category error by replacing the un-
indexed NaN with an appropriately indexed NaN. The second correction is to 
distinguish two, incompatible, readings of the equality sign. We do this by 
producing two, corrected, IEEE columns: one recording equality as  and 
the other recording the computation of a result (a return value) as . In the 
equality column we use separate indexes (i, j) within a row, because no NaN is 
equal to any NaN, including itself (see,12 page 12). In the assignment column we 
use separate indexes (i, j) because the kind of NaN that is returned depends, 
amongst other things, on whether or not an appropriate trap is set (see,12 pages 13 
and 14). The third correction is to remove a third, incompatible, reading of the 
equality sign by replacing  with  and by replacing 

 by . In the IEEE standard it is a mutually 
exclusive option whether relational operations return a Boolean value, TRUE or 
FALSE, or whether they return no value at all and set flags. See,12 page 12. 
Again, following the Principle of Charity, we make the least disruptive 
assumptions we can and allow the Boolean relations. With these corrections in 
place, we do not need to annotate the IEEE column with the sentence, “i.e. 
applying unary negation to NaN yields NaN,” because our correct use of the 
equals sign does not require any extraordinary explanation.

Transreal arithmetic IEEE Floating-point arithmetic

Equality and Return Value Equality Return Value

a b=
a b→

Φ Φ TRUE⇒= Φ Φ=
NaN NaN FALSE⇒= NaN NaN≠

+1 0÷ ∞= +1 +0÷ ∞= +1 +0÷ ∞→

1 0÷– ∞–= +1 0–÷ ∞–= +1 0–÷ ∞–→

0 0÷ Φ= 0 0÷ NaNi≠ 0 0÷ NaNi→

∞ 0× Φ= ∞ 0× NaNi≠ ∞ 0× NaNi→

∞ ∞– Φ= ∞ ∞– NaNi≠ ∞ ∞ NaNi→–

Φ a+ Φ= NaNi a+ NaNj≠ NaNi a NaNj→+

Φ a× Φ= NaNi a× NaNj≠ NaNi a× NaNj→
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Table 5.2:Corrected comparison of Transreal versus IEEE floating-point arithmetic

On the most charitable reading, only the first row of the IEEE Equality column 
shows the same behaviour as transreal arithmetic, that is, . The 
remaining eight rows show a different behaviour. Again, on the most charitable 
reading of the IEEE Return Value column, if we ignore the category error, by 
ignoring the indexes on NaN, then eight of the rows are the same, and only the 
second row is different:  but . On a less generous 
reading, if we pay attention to the indexes on NaN, then only the first row is the 
same, , and the remaining eight rows are different. In summary, if 
we ignore the category error then 9 out of 18 comparisons are different, but if we 
pay attention to the indexes on NaN then 16 out of 18 comparisons are different.

The main difference between transreal arithmetic and 
IEEE floating-point arithmetic is that whilst nullity 
compares equal to nullity, NaN does not compare equal to 
NaN.

Correct.

Due to the more expansive definition of numbers in 
transreal arithmetic, several identities and theorems which 
apply to all numbers in standard arithmetic are not 
universal in transreal arithmetic. For instance, in 
transreal arithmetic,  is not true for all , since 

. That problem is addressed in [one of 
Anderson’s papers]. Similarly, it is not always the case in 
transreal arithmetic that a number can be cancelled with 
its reciprocal to yield 1. Cancelling zero with its reciprocal 
in fact yields nullity.

Correct.

Transreal arithmetic IEEE Floating-point arithmetic

Equality and Return Value Equality Return Value

Φ– Φ= NaNi– NaNj≠ NaNi– NaNj→

Φ Φ= NaNi NaNj≠ NaNi NaNj→

+1 +0÷ ∞=

1 0÷– ∞–= +1 0–÷ ∞–→

+1 +0÷ ∞→

a a– 0= a
Φ Φ– Φ=
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Examining the axioms provided by Anderson, it is easy to 
see that any term which contains an occurrence of the 
constant  is provably equivalent to . Formally, let  be 
any term with a sub-term , then  is a theorem of 
the theory proposed by Anderson.

This is a correct description of transreal arithmetic, but this behaviour of nullity 
does not generalise to all transnumber systems. Nullity is not a universal bottom 
element which automatically drives all terms containing it to bottom, as a future 
publication will demonstrate.

I hope I have now done enough to demonstrate that the Wikipedia article3 on the 
similarity of transreal arithmetic6 and IEEE floating-point arithmetic12 has no 
merit. As I have already pointed out more than eighteen quintillion differences, I 
am at a loss to know how else to criticise the article, in its own terms, so I now 
turn to criticising the central thesis of the article by examining the IEEE standard 
itself. Again, we shall see that there is no merit in the suggestion that transreal 
arithmetic and IEEE floating-point arithmetic are similar. I begin by examining 
the ordering relations.

IEEE standard

Φ Φ t
Φ t Φ=

Predicate Greater Less Equal Unordered Exception

= F F T F No

?<> T T F T No

> T F F F Yes

>= T F T F Yes

< F T F F Yes

<= F T T F Yes

? F F F T No

<> T T F F Yes

<=> T T T F Yes

?> T F F T No

?>= T F T T No

?< F T F T No

?<= F T T T No

?= F F T T No
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Table 5.3:IEEE ordering relations: 14 positive, 12 negations, 12 exceptions

The IEEE standard,12 pages 12 and 13, provides four, mutually exclusive, 
Boolean, ordering relations: less than (<), equal (=), greater than (>), and 
unordered (?). As special cases, minus zero and zero compare equal (-0 = 0), even 
though these two objects are different, and NaN objects compare unequal, even if 
they are identical . Apart from these special cases, the relations less 
than, equal, and greater than all have their usual mathematical meanings. The 
unordered relation is true (T) if any of its arguments is NaN, and is false (F) 
otherwise. This gives the only standard way of determining if an object, , is 
NaN: by testing the truth of . The forms isnan(x) and  are specifically 
excluded from the standard. See,12 page 17. While the four ordering relations are 
mutually exclusive, they are not orthogonal: there are 14 positive relations, with 
no NOT predicate, and 12 negations, with NOT predicates. The non-negated pair 
of relations is equal (=) and not equal (?<>). Consequently, the missing negations 
are NOT(=) and NOT(?<>). Precisely 12 of the Boolean relations generate 
exceptions (error conditions) if any of their arguments is NaN. But the 
implementor of the standard is free to choose whether to supply Boolean 
operations, with exceptions, or else flags – greater, less, equal, unordered – 
without exceptions. If Boolean relations are implemented then only the first 6 are 
mandatory (=, ?<>, >, >=, <, <=). If exceptions are generated, the programmer 
can choose whether to handle the exceptions in a trap, or else to let the standard 
complying system follow its default behaviour. All in all, the IEEE standard 

NOT(>) F T T T Yes

NOT(>=) F T F T Yes

NOT(<) T F T T Yes

NOT(<=) T F F T Yes

NOT(?) T T T F No

NOT(<>) F F T T Yes

NOT(<=>) F F F T Yes

NOT(?>) F T T F No

NOT(?>=) F T F F No

NOT(?<) T F T F No

NOT(?<=) T F F F No

NOT(?=) T T F F No

Predicate Greater Less Equal Unordered Exception

NaNi NaNi≠

x
x?x x x≠
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specifies two, complicated, means of ordering floating-point numbers and allows 
considerable variation in how these are implemented.

Transreal arithmetic6 provides three, mutually exclusive, Boolean, ordering 
relations: less than (<), equal (=), and greater than (>). These relations have their 
usual mathematical meaning. There are no special cases and no exceptions. The 
operations are orthogonal, with no missing predicates and no missing negations. 
The empty symbol () with no occurrences of <, =, > is not listed because it is 
empty. The full symbol (<=>) with all occurrences of <, =, > is not used listed 
because it is constant true. Nonetheless, these symbols could be supported by a 
computer language, if desired. The implementor is free to implement transreal 
ordering relations with Boolean predicates, flags, or any sufficient method.

Table 5.4:Transreal ordering relations: 6 positive, 6 negations

In summary, transreal arithmetic provides the usual mathematical ordering 
relations, with their ordinary mathematical meanings. But IEEE floating-point 
arithmetic provides an additional (and completely redundant) mathematical 
ordering relation (unordered), changes the meaning of the ordinary mathematical 
relation of equality, changes the other relational operations so that some of them 
generate exceptions, omits two negations, forbids the implementor from using 
both flags and Boolean relations, and, perversely, recommends that NaNs are 

Predicate Greater Less Equal

= F F T

> T F F

>= T F T

< F T F

<= F T T

<> T T F

NOT(=) T T F

NOT(>) F T T

NOT(>=) F T F

NOT(<) T F T

NOT(<=) T F F

NOT(<>) F F T
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identified by non-standard methods. All of these departures from the ordinary 
mathematical ordering relations are redundant, as the counter example of 
transreal arithmetic demonstrates.

The IEEE standard,12 pages 13 and 14, specifies two kinds of NaNs – signalling 
NaNs and quiet NaNs. Either kind of NaN may be used for any purpose, except 
that signalling NaNs must be reserved values and must raise an exception – which 
may or may not be handled by the programmer. If the programmer chooses not to 
handle the exception, and a floating-point result is to be returned, then a quiet 
NaN must be returned (thereby discharging the signal). The standard does not say 
which quiet NaN should be returned. If an operation is applied to some quiet 
NaNs, but no signalling NaNs, and a floating-point result is to be returned, then 
one of the argument NaNs must be returned. But the standard is silent on which 
one should be returned. In either case, the return value must be in a basic or 
extended format that is capable of representing the required NaN. Hence, the 
existence of NaNs places an obligation on the language designer to ensure that 
the return value is large enough. By contrast, transreal arithmetic6 has no silent or 
signalling objects of any kind. It has only unique numbers, leaving the language 
designer free to implement any sufficient type system.

The IEEE standard,12 page 13, specifies infinity in terms of real limits, but this 
specification cannot be achieved, as this counter-example shows. Suppose that 

 is a representably large, positive, floating-point number such that  is 
unrepresentably large and rounds off to infinity in the default rounding mode. 
Then  for any real , but the floating-

point sum rounds off to infinity. Now, real  and we have a contradiction. By 
contrast, transreal arithmetic defines infinity as the unique number , 
irrespective of the existence of limits. But, to be fair to the IEEE standard, it also 
gives another specification of infinity that can be achieved. Presumably, one is 
supposed to ignore the impossible specification.

The IEEE standard,12 pages 14 and 15, specifies five exceptions (error 
conditions). These are: invalid operation, division by zero, overflow, underflow, 
inexact. But in transreal arithmetic it is not an error to divide by zero so the 
division by zero exception is pointless. Similarly, transreal arithmetic is a total 
arithmetic, meaning that any defined, arithmetical operation can be applied to any 
operands. Hence, the invalid operation exception can never occur. These 
exceptions are redundant.

Pi P= 2P

P0 P1 P2 P3– k4 05 … 0i+ + + +–+
i ∞→
lim k= k

k ∞≠

∞ 1 0⁄=
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In summary, the IEEE standard12 defines an unordered relation which is 
redundant, and which greatly confuses the ordering relations by introducing 
special cases and exceptions (error states). It also introduces two redundant 
exceptions: invalid operation and division by zero. Transreal arithmetic has none 
of these redundancies, special cases, or exceptions.

I hope I have now done enough to show that there is no merit in the thesis that 
transreal arithmetic resembles IEEE floating-point arithmetic. There is a great 
deal more I could say on the standard, but it pales into insignificance when we 
compare the roles of transreal arithmetic and the IEEE standard.

Scientific status Transreal arithmetic is a scientific theory that, under the evolutionary pressure of 
maintaining efficiency in a physical mind described by perspexes, certain 
historical algorithms of arithmetic evolved to allow division by zero in a way 
which is mathematically consistent6 and which is consistent with the behaviour 
of the physical universe.7 Quite separately from this theory, the axioms of 
transreal arithmetic have been proved to be consistent,6 but the proof is, 
potentially, falsifiable: either through some error in the proof or by a revision in 
the meaning of the terms used in the proof. Independently of challenges to the 
axiomatic system, the underlying theory can be challenged by developing other 
transnumber systems and by using all of the transnumber systems to make 
scientific predictions in physics, engineering, and the like. Once a transnumber 
system has been axiomatised, mathematicians can make predictions from the 
mathematical theory. By contrast, IEEE floating-point arithmetic is not a 
scientific theory, it is a standard agreed by a committee. The standard was known 
to be inconsistent shortly after it was introduced. The inconsistencies were 
resolved by adopting certain popular computers as reference systems, and by 
comparing all future floating-point systems to these. It is possible to make 
mathematical predictions about the performance of floating-point algorithms, 
given a common understanding of the norm-referenced behaviour of floating-
point arithmetic, but the standard can be modified at any time, and can lapse or be 
withdrawn at its quinquennial reviews. The IEEE standard is a commercial 
document, not a scientific theory. It is no surprise, therefore, that when the 
standard is judged by scientific criteria it fails. Occam’s razor militates in favour 
of transreal arithmetic because it uses the ordinary mathematical ordering 
relations, including equality, with no special cases or error states. By contrast, 
IEEE floating-point arithmetic uses a redundant ordering relation (unordered), 
introduces special cases of equality, and introduces numerous redundant objects 
(NaNs). IEEE floating-point arithmetic is grossly inefficient in its ordering of 
numbers, a fault which has commercial implications.
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Mathematical status Historically, mathematics has progressed by formalising certain concepts used in 
domestic life, commerce, industry, and science. The formalisations are then 
proved, extended, and developed into abstract mathematical theories. It is easy to 
forget this history when surveying the panoply of modern mathematics, but 
history is impressed on the present. The multiplicative inverse is a formalisation 
of several ways of performing division. It is built deep into the foundations of 
algebra, calculus, and topology. But it is only one way of formalising division. 
Division with remainder is another formalisation of division which illuminates 
different, and therefor compatible, aspects of division. But transreal division 
raises a more serious challenge. It is consistent with the multiplicative inverse, 
wherever this inverse is defined, but it also applies in cases where the 
multiplicative inverse does not apply. It places extra demands on mathematical 
proof and algorithms, but it repays this extra cost by making mathematics total. 
Some mathematicians have examined total systems, but the majority of practical 
mathematics is partial – it fails on division by zero and its mathematical 
consequences. It is a fact of life, attested to by the widespread use of IEEE 
floating-point arithmetic, that ordinary mathematics does not meet the needs of 
domestic, commercial, industrial, and scientific computing. In this sociological 
sense, ordinary mathematics is invalid. It does not describe what people do when 
they compute. Transreal arithmetic is an attempt to improve on all pre-existing 
social and arithmetical approaches to dividing by zero.

Commercial status The IEEE standard is embodied in general-purpose computer chips with an 
annual market of, about, 150 Bn US dollars. Computer systems built using these 
chips have a considerably higher commercial value. The social impact of these 
systems is huge. The IEEE floating-point standard, produced by a US standards 
body, is very complicated and is norm-referenced to computers manufactured in 
the US. It provides a barrier to the entry of new chip suppliers into a market 
which is, currently, dominated by one supplier – the US company, Intel. Proposed 
revisions of the IEEE standard increase its complexity and raise the hurdle on 
entry to the general-purpose chip market. The US can be rightly proud of its 
commercial and technological innovation. Its chip manufacturers now have an 
opportunity to adopt transreal arithmetic which will make both its floating-point 
and integer processors7 more efficient. But its competitors have the same 
opportunity. An opportunity which is magnified by the software market for 
reliable and safe software based on a simpler computer arithmetic.

I wonder how this will turn out. Will the US continue to develop silicon guzzling 
chips at a time when other countries develop lean technologies? And will the 
outcome of this scenario be any different from the development of gas guzzling 
automobiles?
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CHAPTER 6 Sheila Roberts
Introduction Sheila Roberts (1920-) was a teacher trainer, specialising in mathematics, 
throughout much of her career. She was involved in the introduction of the new 
mathematics in the 1960s. I was interested in her experiences of introducing a 
new mathematical syllabus because it might have important lessons for the 
introduction of transarithmetic, or some other total arithmetic, into primary and 
secondary schools. I met Sheila on 26 February 2008 and made written notes and 
an audio recording of the meeting. The text below is an edited version of those 
records which has been corrected by Sheila. It conveys those parts of our 
discussion that seem relevant to a future introduction of a mathematics syllabus. 
Sheila begins by recalling her move from being a teacher in a girl’s grammar 
school to being a teacher trainer in a college in the 1960s. She had also been a 
teacher in a boy’s school and a mixed-sex school.

Sheila – structure of 
teacher training courses

In 1960 all teacher training courses were increased from two years to three years, 
and on passing the course students gained a Certificate of Education not a degree. 
The degree qualification came later. Students who trained for primary teaching 
would have a three year course in educational studies and professional studies, 
mathematics being a compulsory element, and an academic study, at their own 
level, in a subject of their own choice. So one of my jobs was to bring the 
students into some sort of comprehension of what a child can cope with in 
mathematics. In the first term of their second year they would have a period of 
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time with me, and each student would go into a school equipped with their own 
material. They made everything in those days. They made their rulers 

James They made their own rulers?

Sheila - home made 
mathematical equipment

Yes, I’ll show you one.

[Sheila produced a yard stick made out of a light coloured wood. On one side 
alternate foot lengths were marked in red, on the other side alternate inches were 
marked in red. The stick was obviously home made.]

James Gosh.

Sheila They could get any help they liked. They could go to a brother or a carpenter or a 
father. And that was the yard rule I used. Of course that did them good, because 
they had to think about it.

James I have seen things like this, but made more professionally. What about things like 
set squares and protractors?

Sheila Protractors no, because angle wasn’t taught in junior school. Except that they 
would make a surveying instrument with a straw and a plumb line. And that was 
better than a professional instrument because the children could make it 
themselves. There was a lot of “hands on” with children.

Sheila – understanding 
before rote learning

Anyway, each student would take two children for about an hour on a topic we 
would agree with the school that they would do. The school might say, “Well, we 
will leave it to you,” so I would let the student choose. Depending on the age of 
the children they might do weighing or number or measurement. It was very 
hands on. Our policy was that children should understand, before you start 
pushing rote learning. They don’t figure that way now.

James What do they figure now?

Sheila They concentrate on rote learning.

What did give teaching a bad name was people said, “Oh, they don’t have to learn 
tables.” But they do have to learn tables. But our policy was to learn how a table 
is built up before they had to do rote learning.

…
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James What was the motivation for teaching tables? One possibility is that it is so that 
people can do arithmetic. Another is that it is the basis of multiplication tables in 
algebra. Was that a consideration at primary school or was it purely practical?

Sheila – mathematics as a 
practical skill

That’s a good question  I remember now. It was practical. They had to use 
what they learnt. We had an awful lot of practical work. Students would take 
children shopping. I don’t think there was much pressure on, “they will need it 
later in algebra.”

We didn’t call it “arithmetic.” We called it “mathematics.” We also introduced 
geometry.

James What was the motive for introducing geometry. I am surprised you had to 
introduce it.

Sheila – geometry It was looking at shape. Looking at the world around us. We worked with other 
departments. In science they might meet shapes that are strong, like the triangle.

James There are a lot of triangles in the environment when you come to think of it.

Sheila I used to go to college by train. And I used to come into Clapham Junction and 
they had cranes. And I remember sitting in the train window when it stopped and 
thinking, this is what students need to see, this is what a child needs to see. The 
boom of a crane is made out of girders arranged in triangles. We did encourage 
taking children to see things in reality.

James A school would do visits?

Sheila Yes. That’s when they had the money.

James I went to a village primary school where I was the ninth pupil. We went on trips 
out, but it was all rural. There was nothing industrial to see.

Sheila – rural schools I musn’t digress. But my brother left industrial dairying and became a teacher. He 
ran a school farm for junior-middle in the seventies, and he had in his school: 
cows, sheep, ducks. And the children did everything. They let them out in the 
morning. They weighed their food. They recorded the number of eggs. At 
weekends my brother was gradually able to ease off and the children would run 
everything. The eggs were sold in a local market.

James Where was this?

…
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Sheila It was in Buckinghamshire.

James So that was a rural setting, was it?

Sheila Yes. It was.

At least the children knew that milk doesn’t come from a supermarket, it comes 
from a cow.

James Can you tell me more about what was taught in schools?

Sheila – algebra There was some algebra. Guess the hidden number, that sort of thing.

James The solution of an equation with a single variable?

Sheila – new mathematics Yes, yes.

[Sheila produced a book8 she had written to help teachers with the new 
mathematics. She pointed to the cover.]

That was the sort of thing we had to have. One coloured child, a boy and a girl. 
You can see the sort of equipment they had.

I think there was a surge to get children to understand more. We did get some 
schools that were reluctant. But there was enormous encouragement from the 
Local Education Authority. Again they had the money. Teachers would come all 
day Friday, and we would do stuff like in that book. And they would take it back 
to the school the next week. Then, when they came back again, they had to say 
how they had introduced some new work and what had happened. And, 
particularly, where they ran into difficulties.

James And did that help?

Sheila – fear of 
mathematics

Well, I thought that it did. We had some teachers who were terrified of the 
subject. It is terrible to think that we had some teachers who were terrified of 
mathematics, isn’t it?

James Do you think that has changed?

Sheila I hope it has.
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James There were some teachers who were terrified?

Sheila Perhaps I am exaggerating. Frightened. Particularly about, “What you are going 
to do with us,” “I only know what I do,” if you know what I mean?

James So teachers would have a limited range of things they could do, which was based 
on their own experience. They didn’t have any depth behind it, or know what the 
mathematics was for, or why it works?

Sheila – communicating 
the purpose of 
mathematics

Exactly.

This is personal. But I had a tutor when I did my postgraduate training. I was a 
mature student, because of the war. This was at secondary school. But he said that 
if a child said, “Why are we doing this?” then you knew you had done a bad bit of 
teaching.

James Where did the new mathematics come from?

Sheila – universities were 
a repository of new 
mathematics

Universities. And it must have come from their concern about the incoming 
students not knowing enough of the modern approach and content.

James And modern content would mean things like set theory and 

Sheila – Boolean algebra That’s right. And Boolean algebra.

James Was that seen as a basis for logic or for the computer industry?

Sheila Logic in those days. Computers were just beginning in the 1960s.

James Did you tie it up with Venn diagrams and sets?

Sheila – Venn diagrams Yes, yes.

James So that is giving quite a pictorial, solid, picture of logic by tying it to the 
diagrams.

Sheila Yes. I think it gelled very well with the hands-on approach.

The surge was, that we, as teachers, didn’t know the modern maths.

…
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James That raises a lot of logistical problems. How were all the teachers taught, because 
there are many tens of thousands of teachers. Who did the teaching? How was it 
financed? How long did it take?

Sheila – teacher training 
for the new mathematics

I’ll tell you. Kings College London ran courses for us, once a week, on Monday 
evening from six to eight. This would be for us, the teacher trainers. We were 
taught by the university staff. Everybody was terribly keen.

The mathematics section of the Teacher Training Association ran a summer 
conference, for a week, in the summer vacation. The morning was given over to 
algebra, computing, or whatever it was. The computer was put in for a bit of a 
lark. In the afternoon we would have another lecture, and sometimes one in the 
evening. The schools inspectors came too, as participants and lecturers.

We got an enormous amount of support from the universities.

I loved those courses. I started to take off.

The Local Education Authority put advisors into schools to help the teachers with 
the new mathematics. That was the way they saw the future. That help would 
come from within the schools. Universities couldn’t do everything.

James What I am seeing is, there were a lot of staff in the universities who already knew 
the new mathematics. They passed it on to the people doing the teacher training, 
and there were advisors within a school who would help their colleagues.

Sheila – books The other thing, James, was that there were an enormous number of books being 
published. Which is again because there was the money then.

James Where did all this money come from?

Sheila – school inspectors I think it is when Harold Macmillan said we never had it so good.

I had a very high regard for the school inspectors. I had a particular situation. I 
was teaching at a grammar school. The head teacher wanted me to teach 
mathematics to the children who had given up on it. I had them calculate what it 
would cost to decorate a bed sit, like they might have when they left college. 
They had to go to the shops to get realistic prices. And that was an enormous 
success the first year. Then the inspection year, I get a rebellious group. You do in 
schools. I really thought, “what rotten luck.” I couldn’t get anything from them. 
The inspector, she became a good friend in later years, she said, “I think you 
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write them off.” She told the Head, and it was down in the report. But, she said, “I 
musn’t leave it at that. I’ll give my mind to this and ask my colleagues what to 
do.” And she turned up in six months time and made some very good suggestions 
which she discussed with me and the Head teacher.

I was on the staff of a college, independent of any Local Education Authority. 
Our college was next door to a Roman Catholic college, down the road was a 
Church of England college, and across the road was a Methodist college. The 
four of us were not Local Authority, we were independent.

James It’s interesting. There were religious teacher training colleges. Were they training 
teachers for their own schools or more generally?

Sheila – faith schools Well, I suppose, once, when they started, for their own schools. But eventually, 
generally. There were still Catholic, Methodist, and Church of England schools 
who only took their own. But that was going. There was a loosening up.

James Did all of the religious denominations pursue the new mathematics? Was there 
any religious dimension of encouragement or restriction?

Sheila Everybody taught the new mathematics. The church authorities governed their 
colleges, not the content of courses. They would say things like, “Are you doing 
the new mathematics?” that sort of thing, but nothing more than that. They didn’t 
say they wouldn’t and they didn’t necessarily give any encouragement.

James We haven’t discussed examinations yet.

Sheila – examinations My involvement was the initiation of the Bachelor of Education degree. We set 
the questions, but they were vetted by the university.

The universities had quite an influence on the examination boards for A-level in 
secondary schools.

We had some problems. Some students had done the new mathematics and some 
had not.

James How did you cope with having students with different backgrounds?

Sheila We would put on special courses. And, as far as examination questions were 
concerned, they would be either or, for a while.
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It’s a different life now. In my day it was security of tenure. You remained there 
as long as you wanted, and could cope.

James So let’s explore that for a moment. School teacher had tenure or 

Sheila – tenure Yes. School teachers had tenure.

James That’s interesting. University teachers used to have tenure. That was removed in 
about 1982. I had always known that university staff had tenure. The idea was 
that it gave them the security to challenge existing knowledge. That was the 
motivation for it. You would know that you were secure in your job if you went 
around challenging all of the accepted notions. Otherwise you might come under 
pressure 

Sheila – influence of the 
British Empire

 and you are out.

In a sense Harold Macmillan was right. We never had it so good.

And the other thing was that we were loosing our Empire. My Principal was 
written to by the British Council, saying that since we had so many overseas 
students, they would be very pleased if somebody would like to have secondment 
to go overseas to see what jobs our students had when they went back home. Like 
a cheeky Charlie, I decided I’d quite like to do it, even though I had only been at 
the college a short while, and I went to Ghana. And what Ghana wanted was new 
mathematics. The Americans were printing books on new mathematics for 
Africa.

James How did the Ghanaians know that they wanted new mathematics, rather than just 
mathematics?

Sheila I know. When they were part of the Empire they were taking English 
examinations, so when they got their independence they knew what we were 
doing.

James You say the Americans printed books on new mathematics. Was new 
mathematics being introduced in America at the same time?

Sheila – influence of the 
space race

Yes, of course. Don’t forget Sputnik, which the Russians got into space first. 
After that, the Americans decided that mathematics must be taught vigorously.

…

…

…
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James So how long did it take, in Britain, before everyone switched over to the new 
mathematics?

Sheila – speed of 
introduction of new 
mathematics

Probably about five years. It was quite quick, but the examinations pushed it 
through.

James I am told, but I don’t know how accurate this is, that, these days, text books in a 
school turn over in about fifteen years. So to switch a mathematics syllabus in 
five, if things were funded at the same rate, must have involved a special effort to 
change the text books.

Sheila Yes. There were a heck of a lot of books being published. It really seized 
everybody. We were influenced by Sputnik.

James I have heard mathematics teachers say, these days, that people are happy to say 
they are innumerate.

Sheila – innumeracy That is very true, actually. 

I don’t mind saying I am a mathematician now.

They’ll say, “I was never good, but my daughter was quite good.” “My daughter 
gets on with it,” or “isn’t worried by it.”

Children who have said, “Mathematics frightened me.” They only had to have an 
off day, in the mathematics class, that they would break the sequence, coming 
through. They would have to jump over something they hadn’t comprehended in 
the beginning, and were thrust into the next stage, before they had really done the 
earlier work.

James Now that is a little bit surprising. Mathematics is largely hierarchical, but it is not 
nearly as hierarchical as people make out.

Sheila – non-hierarchical 
nature of mathematics

No, it isn’t.

James But if, by missing a single lesson, you could break the sequence, it means there 
wasn’t much revision of concepts. Much crystallising and making it concrete. 
Learn this, and learn what it is for. In practice, of course, you learn the new stuff, 
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and then relate it back. So mathematics was being taught in an overly linear 
fashion?

Sheila – fun and 
confidence

Yes, I think so.

It irritates me, this. When they had to learn things. There was no evidence, unless 
you had very good teachers, of the fun of something. Alright, it’s fun to know 
how nine, times up. You know, 9, 18, 36, 45.

[ , , , ]

“Oh, I never knew.” And when they see this, “oh, yes. It does.” And you would 
know when nine went into a number. That sort of thing. Suddenly going out of 
the straight and narrow, into investigation.

James At the weekend, a school teacher showed me how to do the nine times table on 
my fingers. Do you know that method?

Sheila Yes. And I have forgotten it. But it is fun, isn’t it?

James It is absolutely amazing.

Sheila All sorts of things like that get my children, primary school children, interested. 
And then they get their confidence.

James Of course it is talking the language of children. Making it a game. Children play. 
So these mathematical games latch into what children do.

Sheila Absolutely

I was in the hall one day and some children were challenging each other to see if 
they could jump two steps at a time. One child jumped, “two, four, six,” then he 
said, “it is the same as my two times table.” Children are doing well if they can 
link mathematics to other things.

James I remember, once, this was when I was quite old, I suppose, a young teenager, 
working out the power I developed when I jumped up some steps. It’s a fairly 
interesting calculation, involving my weight, the height, the time. I was quite tall. 
I could jump four or five steps from a standing start. With a stop watch, in a 
fraction of a second. I was developing something like three and a half kilo Watts 

9 9= 1 8+ 9= 3 6+ 9= 4 5+ 9=
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of power. I said, “well, why don’t my muscles burst into flame, then?” It is an 
enormous amount of power.

Sheila That is a lovely thing to find out.

James The answer, of course, is that it lasted such a brief second, that my muscles didn’t 
get hot enough to burst into flames. There wasn’t that much energy there.

It is interesting, how good demonstrations make mathematics and physics very 
clear.

Sheila Absolutely.

The other thing, I don’t know if you found this, I learnt more mathematics when I 
taught, than I had ever learnt coming up through school and university.

James You mean you learned it in more depth 

Sheila – influence of 
learning to teach

My concepts were better formed.

James – universities teach 
knowledge they have 
created themselves

Yes, because you have got to teach it. It certainly does refine one’s own concepts 
when you have got to teach it. And, partly, it is because you are thinking, “How 
can I communicate this to my pupils or students?” And you deliberately set about 
building concepts to create a story that you can tell. And that is especially so in 
universities, where we are teaching new knowledge that we have created 
ourselves.

Computing is quite good at that. Because computing has to formalise everything 
that computers are used for, you are used to expressing all sorts of intellectual 
things as program code. So you have all those skills for developing concepts and 
presenting them formally.

I am largely self-taught in mathematics. I learnt it by applying the concepts of 
programming. So I would say, “A proof. Hmm, that is a subroutine. I’ll write 
myself a subroutine that lets me change this formula into that one. And now I’ll 
put it together into a bigger one, and a bigger one, and a bigger one.” As a 
programmer, it gives you a mental structure that some mathematicians lack. The 
relationship between the text of a proof and how the text can be used to create a 
proof.

…
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Sheila – computers I can quite believe it. I was going to say to you. Because I didn’t do computing. 
You see, when new members of staff came into the department I was perfectly 
prepared to let them do computing. I just did the old fashioned stuff. People said, 
“you will regret it.” And I do regret not learning about computers. But it relieved 
me enormously, because I had so much administration to do. But as you have 
been talking, I can see the purpose of mathematics as it has been directed to 
computing.

James – total mathematics That’s right. Computing creates a new purpose for mathematics. Mathematics 
was always about solving problems that people had, or giving people techniques 
to explore new things. Now computers are a thing in themselves and they raise 
issues that don’t arise for human mathematics.

One of those, which the mathematics community has not responded to fully, is 
the idea of total mathematics. A total system of mathematics must always work. 
So that the computer always knows what to do next. And a lot of mathematics 
isn’t total. It doesn’t work in certain cases. That’s O.K. for a human being, they 
just say, “Oh, well, the technique doesn’t work in this case.” But a computer can’t 
cope with that. If a technique does not work, it is in big trouble. And so there is a 
pressure beginning to build, among younger mathematicians, to develop total 
mathematics. Mathematics that always works. And that raises a lot of issues that 
haven’t been faced very much. People started thinking about it in the 1930s, 
which is some time ago, but in the mathematical sweep of history, that is fairly 
recent. So there is a pressure to change mathematics.

Sheila How far are things with you, for doing what you want to do?

James – support for 
transreal arithmetic

Well, that’s a good question. I have developed this new bit of mathematics. It is a 
total mathematics. There are other people doing that, too. I am going around 
publishing papers that this mathematics is useful. I have a very few people who 
agree with me. There are two people who agree that it is important to computing, 
it makes computers simpler and faster and safer. So there is a practical side to it. 
There is one person who agrees that it puts mathematics on a firmer foundation, it 
deals with the exceptions better. It doesn’t overturn any of the existing, positive, 
results of mathematics, but it gives some new results. And it turns over some of 
the negative results. Some of the things you couldn’t do before, you can do now. 
And that is always fun. Some of those negative things are to do with when zeros 
and infinities arise. Physical equations used to break down at infinities, but they 
don’t break down any more. You can still do them. So, for example, you can 
calculate a power series at an essential singularity, which is not supposed to be 
possible, but you can just do it. So I am interested in the question of whether that 
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simplifies the modelling of physics. And then the real question is, does the 
physical world work according to these new number systems? The real world 
does not seem to get hung up on infinities. Is it because the real world follows 
some mechanism where infinities don’t arise, or is it that the number system that 
the physical world is operating by, is, in some ways, similar to transreal numbers, 
rather than ordinary numbers?

And there is one person who thinks transarithmetic might be a better way of 
teaching arithmetic. So there are, perhaps, four people in the world who agree 
with me. And a very great many who don’t.

Sheila Well, it’s a start. It’s bound to happen, isn’t it? There are people who don’t want 
it to happen.

James – no exceptions I spoke to another teacher who, after initial resistance, was very positive. And she 
was positive because suddenly it makes all of arithmetic work. There are no 
exceptions. You can divide by zero, there are no exceptions. And she was 
astonished to see that the ordinary rules of arithmetic just continue to work. And 
she said that pupils would love the fact that things work everywhere.

Sheila That’s good. That’s the sort of thing teacher training students like, children as 
well. Why doesn’t it work when I do 

James Well now it always works.

Sheila Does it play much on negative numbers?

James – transreal number 
line and transreal 
arithmetic

Figure 6.1:  The transreal number line with additional infinities

ℵ0 ℵ1 … ℵn ∞ℵ– 0ℵ– 1…ℵ– n∞– 0

Φ

It has no impact on negative numbers. So  I can draw you a picture. Let me 
switch into talking about transmathematics.

…

…
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a
b
--- c

d
---× a c×

b d×
------------=

a
b
--- c

d
---÷ a

b
--- d

c
---×=

a
b
--- c

d
---+ ad bc+

bd
------------------=

We draw the real-number line through zero, going up through the positive 
numbers. At the end of the real-number line there is a gap, then there is infinity 

. On the other side, there are the negative numbers, a gap, and minus infinity. 
Now this gap explains some of the behaviour of infinity. If you are a real number 
there is always a bigger real number. So that’s an open set. Then there is a gap. 
Some other infinities drop into the gap, the transfinite numbers, . And there is 
a new number, nullity,  that lies off the line. Now infinity is one divided by 
zero, . That is axiomatic. It is not in the limit, it is exactly infinity. 
Minus infinity is minus one over zero, . And you might guess what 
nullity is. It is zero over zero, . Now we have defined the infinities and 
zero over zero as numbers. When you do that, all of the algorithms of arithmetic 
continue to work. And because nullity is off the number line, you don’t get any 
contradictions.

So I’ll show you the rules of arithmetic:  over , times  over , equals  time 
, all over  times . In every case. Even when  and  might be zero. This is 

practically the method you taught in schools. Normally the rule is that  and  
musn’t be zero, but you rub that rule out and nothing bad happens.

Now let me show you the division rule:  over , divided by  over , equals  
over , times  over . You define division in terms of the reciprocal, not the 
multiplicative inverse. This works even if any of the numbers are zero.

Now we do addition. It is a little bit more complicated:  over , plus  over , 
equals  times , plus  times , all over  times . So that is the usual rule, 
where you have got separate denominators.

And then there is a special rule: plus or minus one, over zero, plus, plus or minus 
one, over zero, equals plus or minus one, plus, plus or minus one, all over zero. 
That’s handling the addition of the infinities. And you knew that rule, too. It is 
the rule for adding numbers with a common denominator.

∞

ℵi
Φ

∞ 1 0⁄=
∞– 1 0⁄–=

Φ 0 0⁄=

a b c d a
c b d b d

b d

a b c d a
b d c

a b c d
a d b c b d
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 1±
0

------ 1±
0

------+ 1±( ) 1±( )+
0

-----------------------------=

a
b
--- c

d
---– a

b
--- c–( )

d
----------+=

Subtraction is just the addition of the opposite of a number. So  over , minus 
 over , equals  over , plus the opposite of , that is , over .

Now all of the algorithms of arithmetic work.

Sheila Isn’t that lovely.

James Now let me ask you, what is three times infinity?

Sheila It would be infinity.

James – calculating with 
infinity

3 ∞× 3
1
--- 1

0
---× 3 1×

1 0×
------------ 3

0
---= = =

So your intuitions tell you that it is infinity. Now imagine an eleven year old child 
asking, “What is three times infinity?” Well you can show them: three times 
infinity equals three over one, times one over zero, equals three times one, all 
over one times zero, equals three over zero.

Sheila Which is infinity.

James – cancellation

3
0
--- 1 3×

0 3×
------------ 1

0
--- ∞= = =

You have to learn the rules for reducing numbers to least terms: any positive 
number divided by zero is infinity, any negative number divided by zero is minus 
infinity, and zero divided by zero is nullity. But there is a short cut for 
transrational numbers. You just cancel the highest common factor, if there is one. 
So we re-write three as one times three, and re-write zero as zero times three. 
Now we cancel the common factor, three, and the result is one over zero, which is 
infinity. 

a b
c d a b c c– d
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The usual rule would have us cancel the highest common divisor, but that doesn’t 
work, because zero doesn’t have a divisor, where divisors are defined via the 
multiplicative inverse.

Nullity doesn’t have a highest common factor, because every integer is a factor of 
zero, but there is no highest integer.

Some people will grumble about this definition of factors. But their grounds for 
grumbling are that they don’t want to divide by zero.

The last thing you have to watch out for, is always to make the denominator non-
negative, and to reduce numbers to least terms before you add, subtract, multiply 
or divide them.

Sheila That’s lovely. I can see why your teacher liked this. And I can see what you mean 
about total arithmetic.

James – proofs involving 
infinity

∞ c
d
---– 1

0
--- c

d
---– 1 d×( ) c 0×( )–

0 d×
--------------------------------------- 1 d×

0 d×
------------ 1

0
--- ∞ 0>= = = = =

Now you can calculate things you couldn’t before. Let me ask you. Could you 
prove that infinity is a big number?

Sheila The only proof I would say, is that there is always one more number.

James That’s the Peano axioms. But the Peano axioms don’t deal with infinity. They 
always say there is a bigger integer than the integer I have now, but they don’t say 
that any integer is infinity.

Let me give you a proof that infinity is big. We will say that  is greater than 
 if and only if  is greater than zero. And I remind you that 

infinity is bigger than zero. I showed you that in the diagram, and it is an axiom 
of transarithmetic. All it is saying, is that infinity is positive, so I can distinguish 
it from negative infinity. Now:

So infinity, , is greater than any rational number . You have to do slightly 
more to show that it works with irrational numbers, and to figure out how infinity 
relates to itself, to minus infinity, and to nullity. That is the sort of thing you 
might do in secondary school, or with a very advanced group in primary school, 
but you can do it using only the rules of arithmetic that you could teach in 

a b⁄
c d⁄ a b⁄( ) c d⁄( )–

∞ c d⁄
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primary school. No other arithmetic, that children can do, can prove that infinity 
is big.

Sheila That’s lovely. Yes.

James – preparation for 
calculus

So in primary school, you can introduce the idea of infinity in a consistent way, 
using only the arithmetic that pupils are learning anyway, and giving them an 
absolutely firm foundation for understanding infinity, in calculus, in secondary 
school.

Sheila – spiral learning of 
mathematics

What I like about that is that it is always spiral learning in mathematics. You 
come round to it again and you learn more this time round, and round again. And 
if your foundations are right you don’t have to unlearn anything later, or tell the 
child that we will deal with that later.

James Because it is total, you can give a child a complete grasp. Here is the arithmetic, it 
works for everything. This is infinity. You don’t have to put anything off to later.

Sheila Are you wanting to get this launched as a new project, with examinations?

James – teaching transreal 
arithmetic in primary and 
secondary schools

I am interested in the mathematics for itself, and am pushing it in computing. I 
am keen to help my colleagues, in education, prepare the ground for when they 
are happy to pursue this mathematics. This mathematics is controversial. Some 
people don’t like the fact that you can divide by zero, and there are other 
approaches to dividing by zero that some people prefer. None of those 
approaches is arithmetical. This is the only arithmetical one. So it would be easier 
to teach this in schools than any of the others, but I don’t want to push school 
teachers faster than they can accept it.

Sheila – golden ages of 
mathematics

I can remember someone saying that the new mathematics was long overdue. 
They called the new mathematics, the golden age of mathematics, like the golden 
ages of the Greeks and Newton.

James – the speed of 
introduction of new kinds 
of mathematics

My model of how mathematics gets into schools, is that it gets invented 
somewhere, often in universities. On average, it takes the inventor half a working 
life, that is to say, twenty years to come up with the invention. Then it takes 
twenty years to get a toe hold is some area of university education. At which 
point, half the university staff, who work for forty years, have learnt the new 
mathematics and expect it to be taught in secondary schools. And it takes twenty 
years until half the secondary staff have learnt it. And it takes forty years until all 
of the primary staff have learnt it. That is a total of one hundred years, which is 
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about as long at it took Britain to switch from using Roman numerals to Arabic 
ones.

Sheila – influences of the 
second world war

The new mathematics was around in the thirties, but the war had an effect. After 
the war, people who had been in the RAF, or in gunnery, were streets ahead of 
everyone else in mathematics. They had learnt such an enormous amount of very 
practical mathematics.

James So they taught mathematics in the services?

Sheila – Barnes Wallis Yes. One of the things I was told, was to look at how arithmetic was taught in the 
services. Because they couldn't have innumerate soldiers. There was a lot of it 
done in world war one, too. They didn’t mess around. It was very applied.

My father met Barnes Wallis. His persistence in getting the bouncing bomb was 
quite remarkable. Mathematics was a matter of life or death.

James Did you ever meet Barnes Wallis?

Sheila – mathematics 
teaching has improved

No.

I think children are taught better now. There is less horror about mathematics. 
Five years ago, I helped a young girl who had missed out on mathematics 
because she had been ill for a long time. She was terribly keen and is now at 
secondary. I asked her how the mathematics is going. She said she had never got 
stuck and she liked it.

The practical work took a long time, and this is where things started to get a bad 
reputation, because the weaker teachers allowed that time to take over and 
weren't getting down to the more difficult stuff, which they weren't sure of 
themselves.

James Well, I think we have covered quite a lot.

Sheila I think we have covered everything.

James That has been very helpful. Many thanks.
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Conclusion I had always assumed that the new mathematics was special to Britain, but it 
seems it was part of a world-wide trend, spurred on by the second world war and 
the space race. It is interesting that the introduction of the new mathematics was 
long over-due. Perhaps this is necessary, so that there is a large pool of people 
who can teach a new mathematics. And it would seem that we must involve 
universities, teacher trainers, teachers, examiners, government inspectors, and 
professional associations in the endeavour – with the examination boards playing 
a key role in speeding the introduction of a new mathematics. All of this will 
involve huge financial expenditure and will probably only be undertaken when 
computing or physics makes it obvious that we must be able to divide by zero.

I wonder how long it will take to introduce total mathematics to schools. Can we 
do anything that will make it less than a century? And when total mathematics is 
taught in schools, will transarithmetic be a part of it?
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CHAPTER 7 What Use is Nullity?
Introduction I have been asked, by a mathematician, to explain what use nullity is. This strikes 
me as an odd sort of a question because, surely, anyone who has used nullity 
knows what use it is, in much the same way that anyone who has used zero 
knows what use it is. But, for those who have made it this far through the book, 
without using nullity, I now set out my reasons for believing that nullity is useful. 
I have tried to structure the list so that it gives broadly useful things before giving 
specific examples. I hope this will point out the shape of the wood before the 
reader comes across each tree. The reader who takes the time to re-read the list, 
many times, will develop a thorough understanding of the neck of the woods I 
have explored in software, but my advances in the design of computer hardware 
are too radical to explain in this chapter. I also scatter examples of the 
mathematical usefulness of nullity around, like acorns on the ground.

I would very much like to hear from anyone else who has found nullity useful, 
especially if they know of better reasons than I give here. I acknowledge all 
contributions at the end of the chapter.

Totality Nullity is the missing link which converts real arithmetic into a total arithmetic. 
Totality creates new design opportunities that cannot exist in a partial system. 
Total systems are usually too cumbersome to lift, let alone wield as weapons, but 
transreal arithmetic is so simple that eleven year old children can learn it, and 
carry it around in their heads, ready for instinctive use whenever an occasion 
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arises. In time, this will make the whole population better able to design and work 
with total systems.

Compilers Any syntactically correct, transreal expression is semantically correct. The 
compiler need not perform any semantic checks on these expressions, nor need it 
generate run-time code to perform semantic checks. This makes the compiler 
simpler to write, smaller, faster and safer. Similarly, the run-time code is simpler, 
smaller, faster and safer. And the hardware can be made simpler, smaller, faster 
and safer. When used in a conventional design, these advantages multiply 
together to give a significant improvement. When used in a radical design their 
synergies bring about orders of magnitude of improvement.

Programming examples The following programming examples are written in pseudocode. The reader 
who cares to try the examples will find that the effort of transcribing them into an 
existing programming language highlights the computational issues which are the 
subject of the example. Thus, the reader will be exposed to the issues twice: once 
when writing the code and again when testing it. In each example, I describe a 
problem and then solve it using floating-point arithmetic12 and then transreal 
arithmetic. No doubt the examples can be re-written more efficiently in any 
particular programming language. The effort of transforming the programs into 
their most efficient form will force the reader to consider the issues a third time. 
It is only by using transreal arithmetic, and comparing it to its alternatives, that 
one comes to appreciate its strengths and weaknesses.

Membership of a list Write a program that returns true if a given target is a member of a given list and 
false otherwise.

If we use floating-point arithmetic the specification is not clear. Are we to treat 
zero and minus zero as the same number? I now decide not. Are we to treat all 
objects which are not a number as equal? I now decide that we are.

define ismember(target, list) -> found; 
    false -> found; 
    for number in list do 
        if   (number = target and 1/number = 1/target) 
              or  
             (number != number and target != target) 
        then true -> found; 
        endif; 
    endfor; 
endefine;
96



What Use is Nullity?
If we use transreal arithmetic the specification is clear.

define ismember(target, list) -> found; 
    false -> found; 
    for number in list do 
        if  (number = target) 
        then true -> found; 
        endif; 
    endfor; 
endefine;

Computing the largest ele-
ment of a list

Return the largest element of a given list.

If we use floating-point arithmetic then the specification is not clear. What size is 
an object which is not a number? I now decide that it does not have a size. What 
are we to do if the list is empty or contains only objects that are not a number? I 
now decide that we are to return a NaN in this case.

define maximum(list) -> max; 
    false -> found; 
    -1 / abs(0) -> max; 
    for number in list do 
         if   number = number and 
              number >= max 
         then true -> found; 
              number -> max; 
         endif; 
    endfor;

    if   not(found) 
    then abs(0) / abs(0) -> max; 
    endif; 
enddefine;

If we use transreal arithmetic then the specification is clear, except that we must 
decide what to do if the list is empty. I now decide that we are to return nullity in 
this case.
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define maximum(list) -> max; 
    false -> found; 
    -1 / 0 -> max; 
    for number in list do 
         if   number != nullity and 
              number >= max 
         then true -> found; 
              number -> max; 
         endif; 
    endfor;

    if   not(found) 
    then 0 / 0 -> max; 
    endif; 
enddefine;

Computing the supremum 
of a list

Return the supremum of a list.

If we use floating-point arithmetic then the specification is not clear. What size is 
an object which is not a number? I now decide that it does not have a size.

define supremum(list) -> sup; 
    -1 / abs(0) -> sup; 
    for number in list do 
         if   number = number and 
              number > sup 
         then number -> sup; 
         endif; 
    endfor; 
enddefine;

If we use transreal arithmetic then the specification is clear.

define supremum(list) -> sup; 
    -1 / 0 -> sup; 
    for number in list do 
         if   number > sup 
         then number -> sup; 
         endif; 
    endfor; 
enddefine;
98



What Use is Nullity?
Computing the arithmetic 
mean of a list

x

xi

i 1=

n

∑
n

--------------=

x 0
0
---=

Return the arithmetic mean of a list.

On consulting a textbook of mathematical statistics we read the following 
definition of the sample mean. (See,11 pages 254-255).

If  constitute a random sample, then

is called the sample mean

This is a clear specification. But what are we to do if the list is empty? I now 
decide that we should return

in this case.

Note that statisticians might take a different view of the appropriate mean of an 
empty sample.

If we use floating-point arithmetic the specification is now clear, except that we 
must decide whether or not to raise an exception on division by zero and we must 
decide which NaN to return. I now decide that we should not generate an explicit 
exception and choose the NaN programmatically.

define mean(list) -> average; 
    abs(0) -> total; 
    for number in list do 
        total + number -> total 
    endfor; 
    total / abs(length(list)) -> average; 
enddefine;

If we use transreal arithmetic then the specification is now clear.

x1 x2 … xn, , ,
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define mean(list) -> average; 
    0 -> total; 
    for number in list do 
        total + number -> total 
    endfor; 
    total / length(list) -> average; 
enddefine;

Computing the variance of 
a list

s2

xi x–( )2

i 1=

n

∑
n 1–

------------------------------=

The textbook11 of mathematical statistics continues as follows.

and

is called the sample variance.

But suppose that there is just one variate in the sample then  and

 s2 0
0
---=

In this case the sample variance is undefined in real arithmetic and the proof that 
the sample variance is an unbiased estimator of the population variance is faulty 
in this case. This sort of error, where a corner case is missed, is common in 
mathematical papers and texts. It is a matter for statisticians (and 
mathematicians) to decide how to fix this, and similar, errors in their texts.

Now the floating-point specification is clear when we choose which NaN to 
return with no explicit handling of exceptions.

define variance(list) -> var; 
    mean(list) -> m; 
    abs(0) -> total; 
    for number in list do 
        total + (number - m)**2 -> total 
    endfor; 
    total / abs(length(list)) -> var; 
enddefine;

n 1=
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But the specification is faulty for transreal arithmetic. The term  is used to 
return the signed distance from  to . This quantity7 must be computed 
explicitly in transreal arithmetic.

define signed_distance(a, b) -> distance; 
    if   a = b 
    then 0 -> distance 
    else a - b -> distance 
    endif; 
enddefine;

Now we have:

define variance(list) -> var; 
    mean(list) -> m; 
    0 -> total; 
    for number in list do 
        total + signed_distance(number, m)**2 -> total 
    endfor; 
    total / length(list) -> var; 
enddefine;

Conclusion The above examples expose some of the strengths and weaknesses of the 
transreal number system when compared to real arithmetic and floating-point 
arithmetic. Real arithmetic is the easiest to use, but it is partial and does not apply 
to some calculations which arise naturally, and explicitly, in computational 
problems. Both floating-point and transreal arithmetic are total and apply to all 
computational problems (of a finite length), but transreal arithmetic is often more 
concise and is always better specified.

The reader is encouraged to try many more examples. It is only through repeated 
use of competing systems that one can decide which is more useful. For my part, 
I maintain that transreal arithmetic preserves more information about the sign and 
magnitude of numbers than any total arithmetic that can be taught successfully to 
school children. As transreal arithmetic uses only algorithms which are already 
taught in schools, it is well adapted to presentation in schools. I also maintain that 
transreal arithmetic has the potential to solve physical problems that are 
inaccessible to real arithmetic, but I have proposed only one example of this.7 I 
maintain that transreal arithmetic has commercial advantages for handling 
exceptions in floating-point arithmetic. In time, it will become blatantly obvious 
whether, or not, transreal arithmetic is useful. In the mean time, there is no 
alternative to trying it in practical, theoretical and pedagogic settings.

xi x–
x x
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Programming is the art of putting simple functions together to create complex 
and useful ones. But functions do not always work together well. Experience 
shows us that programmers focus on getting the error-free case correct, but 
occasionally mishandle the alternative cases where something goes wrong. 
Throwing exceptions does not improve matters because, while it does simplify 
the coding of the main error-free cases, it does not pinpoint the faults in the 
alternative, erroneous, cases. Rather, it gives up on them in an all or nothing way.

It is always better to program with well-chosen functions whose inputs and 
outputs match up. But for computer arithmetic (and it is hard to think of a more 
basic or important set of functions) this is easier to say than do, because the 
mathematics which it approximates lacks total functions. This is why a theory of 
total arithmetic is important.

Having a total arithmetic makes it possible to compose our arithmetical functions 
together into large, complex functions simply by connecting the inputs and 
outputs together. We do not need exception handling code to make this work, nor 
code to check that the outputs of one function are in the acceptable range of 
another function.

The use of total functions combines especially well with static type-checking. 
Once a function is type checked it will run without generating any run-time 
exception.

Building on this idea, it would be possible for a type system to perform a 
dimensional analysis of the physical or computational units that are assigned to 
numbers. This would prevent satellites from crashing into Mars when 
accelerations in a foot-pound-second system are converted to SI units of 
kilogram-metre-second, and it would prevent invoices in US dollars being paid in 
Hong Kong dollars.

At present, type systems can handle simple conversions by providing type aliases 
for numbers, but they cannot check general arithmetical calculations, because 
these are stated in dimensionless numbers. It is astonishing that no mainstream 
computer language currently supports dimensional analysis, which is a technique 
used every day by engineers and scientists around the world.
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Transreal arithmetic is a better foundation for computer arithmetic, maximising 
the benefits of type analysis and making programming easier, safer and more 
efficient. 
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APPENDIX 1 Answers
4  The Graph of the Reciprocal

4.1

f x( )
Φ  :  x ∞ ∞,–{ }∈
x  :  otherwise⎩

⎨
⎧

=

There are many possible answers. Suppose that  for all numbers, . Let 
us use nullity to model bottom. We define a function, , as:

Now, instead of operating just on some definition of the reciprocal, , we 
operate on . And we choose  so that it gives whatever behaviour we want 
at the extreme left and right of the graph of the reciprocal.

4.2

f x( )
∞  :  x ∞–=
x  :  otherwise⎩

⎨
⎧

=

There are many possible answers. Let us use positive infinity to model an 
unsigned infinity. We define a function, , as:

⊥ n 0⁄= n
f

r x( )
f r x( )( ) r

f
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Now, instead of operating just on some definition of the reciprocal, , we 
operate on . And we choose  so that it gives whatever behaviour we want 
in the graph of the reciprocal.

4.3 The argument presented is a slightly edited version appearing in an article in 
Wikipedia, a web site that aims to provide encyclopaedic synopses of accepted 
knowledge. It is not clear from the argument what the accepted knowledge is 
supposed to be, but on analysing the argument, using the logic of real 
arguments,10 we come to the conclusion that it is an argument that calculus 
cannot specify division by zero. Nonetheless, it is our experience that the 
arguments presented in the article are used by some people to attempt to show 
that division by zero is impossible. Such attempts are doomed to failure because 
arithmetic is logically prior to calculus, so that if any contradiction were found it 
would imply a fault in calculus, not arithmetic. Secondly, calculus deals with 
division by non-zero, infinitessimal numbers so it has nothing to say about 
division by zero.

The first thing in the argument is a diagram. We examine the diagram and find 
that it is unlabelled where the graph approaches the axes. Therefore, we cannot 
tell if the graph approaches or arrives at: zero, an unsigned infinity, one or more 
signed infinities, or bottom. We cannot tell if the graph is connected.

The graph is not an accurate rendition of the reciprocal so we suppose it is a 
sketch. Whenever we are unsure of anything we follow the Principle of Charity10

and assume the best interpretation we can find. In doing this, we try to squeeze as 
much information out of an argument as possible. We are not interested in 
scoring points off the author. On checking the original source we find that the 
diagram there is accurate so the diagram in the present chapter has been edited 
from the original. In fact, I drew the diagram this way because it is less labour 
than preparing an accurate drawing. Nothing is lost to this device and something 
is gained. The sketch preserves all of the information that is needed for the 
purposes of the argument, and it does so in a more exaggerated, and therefore 
clearer, picture.

The figure legend is clearly supplied by the author of the present chapter, not the 
author of the argument.

At first glance it seems possible to define  by 
considering the limit  as  approaches zero.

r x( )
f r x( )( ) r

a 0⁄
a b⁄ b
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Answers
  
b 0+→
lim a

b
--- +∞=

  
b 0+→
lim a

b
--- ∞–=

Why does the author say “at first glance?” Is this introducing a mathematical 
hypothesis or is it a piece of propaganda to encourage us only to “glance” at the 
proposition and not to think about it deeply? The proposition is:

It seems possible to define  by considering the limit 
 as  approaches zero.

We are not interested in the meta-level reasoning of “seeming possibility” so we 
translate the proposition into a concrete one:

It is possible to define  by considering the limit  as 
 approaches zero.

Why should we believe this proposition? The limit is taken in the approach to 
zero, not exactly at zero, so why should the limit have anything to say about 

? I maintain that it has nothing to say in this case.

For any positive  it is known that:

This is true. But is it relevant?

For any negative  it is known that:

Again, this is true. But is it relevant?

Therefore  is defined to be  when  is positive and 
as  when  is negative.

What justifies the logical connective “therefore?” I do not believe that this 
argument from limits is relevant, but I understand that the author of the 
Wikipedia article is introducing a hypothesis that the definition is consistent with 
what is known about limits. If anything turned on this interpretation, I might 
attempt to contact the author to clarify what his or her intention is.

a 0⁄
a b⁄ b

a 0⁄ a b⁄
b

a 0⁄

a

a

a 0⁄ +∞ a
∞– a
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+∞ 1
0
--- 1

0–
------ 1

0
---– ∞–= = = =

1
0–

------ 1
0
---–=

1
0
---–

1
0–

------

However, taking the limit from the right is arbitrary.

No. There are a great many technical requirements on the taking of a limit. Some 
of these specify in which direction the limit can be taken in particular cases.

The limits could be taken from the left.

This is either false or else it exposes an unstated assumption that the graph of the 
reciprocal is connected at . Henceforth, we hold the most generous 
hypothesis, viz, the graph is connected at .

In which case  is defined to be  when  is positive 
and as    when  is negative.

This is true, but it is a tautology. It follows from the unstated assumption that the 
graph is connected at  so that .

This can be further illustrated using the following equation 
(when it is assumed that several properties of the real 
numbers apply to the infinities)

What properties of the real numbers are we supposed to assume apply to the 
infinities? What could possibly justify us in that belief? I do not believe there is 
any property of the real numbers that can justify:

In this context, I am not even sure what is meant by:

Does it mean the same as one or more of the following:

 or 1–
0

------

x 0=
x 0=

a 0⁄ ∞– a
+∞ a

x 0= ∞– ∞=
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+∞ 1
0
--- 1

0–
------ 1

0
--- +∞= = = =

 
a b,( ) 0 0,( )→

lim a
b
---

Whatever it may mean, it is not consistent with transreal arithmetic. If we run 
through the equation, reducing fractions to canonical form, we obtain the 
following harmless tautology:

Returning to the argument, we read:

Which leads to  which would be a contradiction 
with the standard definition of the extended real-number 
line.

The equation does not lead to a contradiction in transreal arithmetic, but let us 
suppose that it does lead to a contradiction in the author’s unstated generalisation 
to an extended-real arithmetic. But on this reading, discussion of the extended 
real-number line is irrelevant, because of the unstated assumption that the graph 
is connected at .

Furthermore there is no obvious definition of  that can 
be derived by considering the limit of a ratio.

Further to what? Further to an irrelevant observation? I take the author of the 
Wikipedia article to say:

There is no obvious definition of  that can be derived 
by considering the limit of a ratio.

Why does the author say “obvious.” What difference would it make to us if the 
definition were obvious or so unobvious as to be a stroke of genius? Regardless 
of this, we hold that no definition of  can be derived by considering the limit 
of a ratio, because these limits are taken in the neighbourhood of zero, not exactly 
at zero.

The limit:

does not exist.

+∞ ∞–=

x 0=

0 0⁄

0 0⁄

0 0⁄
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f x( )
g x( )
----------

x 0→
lim

This is true when  range over the real numbers. It is not true, for example, 
when  are constant zero. But is it relevant?

Limits of the form

in which both of  and  approach zero, as  
approaches zero, may equal any real or infinite value, or 
may not exist at all, depending on the particular functions 

 and .

True. But is it relevant?

These and other, similar, facts show that  cannot be 
well defined as a limit.

What are the similar facts? At best the above argument shows that  cannot be 
obtained as the limit, ranging over some non-constant values, of a ratio. But this 
is obvious to us and is irrelevant to the question of whether or not  can be a 
limit of some function. In fact it can be so obtained, as a future publication will 
show.

Having examined the content of the argument we now re-read it to see what its 
claims are. What does the argument set out to prove? We cannot tell, this is not 
stated. What conclusion is drawn? We cannot tell, there is no written conclusion 
to the argument. At best this is a summary of approaches to division by zero 
which demonstrates that calculus has nothing to say on this topic.

Now we re-read the original source and find references to other works. Perhaps 
these will provide useful information?

Finally, I make a note of where the fallacious argument was published. It is a 
useful debating device to point out that division by zero is not widely understood. 
This demonstrates the academic need for a clear account of division by zero and 
goes some way to demonstrating to a reviewer of my work that I have considered 
the views of others. Of course, I might look out for more authoritative criticisms, 
and use these to bolster my claims that division by zero is not widely understood, 
and that transreal arithmetic provides a very good account of it.

a b,
a b,

f x( ) g x( ) x

f g

0 0⁄

0 0⁄

0 0⁄
110



APPENDIX 2 Notation
Strictly transreal numbers The strictly transreal numbers are: negative infinity ; positive 
infinity ; and nullity .

Addition, subtraction, mul-
tiplication, division

, , ,  are, respectively, the operations of addition, subtraction, multiplication, 
and division. They apply to ordinary numbers in the ordinary way, but also apply 
to the strictly transreal numbers.

Ordinary multiplicative 
inverse

In ordinary mathematics, , is known as the multiplicative inverse and we have 

 when  is not zero. It comes as a shock to many people to 

discover that the multiplicative inverse is not the whole of division.

Transreciprocal
 In transarithmetic, the superscript minus one, , denotes the 

transreciprocal as shown. This includes the ordinary reciprocal, which is defined 
via the multiplicative inverse. The transreciprocal also applies to the strictly 
transreal numbers which have no multiplicative inverse.

Parentheses Parentheses, round brackets, are evaluated, as usual, from the innermost bracket 
to the outermost. The result is then written without brackets. For example, 

, and . Parentheses can be 

∞– 1–( ) 0⁄=
∞ 1 0⁄= Φ 0 0⁄=

+  – × ÷

a 1–

a a 1–× a
a
--- 1= = a

n
d
---⎝ ⎠

⎛ ⎞ 1– d
n
---= 1–

2 4 3–( )×( ) 2 1×( ) 2= = 2 4×( ) 3–( ) 8 3–( ) 5= =
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used to distinguish the negation of a single number from a subtraction of two 
numbers. Thus,  and .

Equals, not equals ,  are the operations equals and not-equals.

Not  is true when  is false, and is false when  is true. The symbol “ ” is known 
as “not.” For example,  means that two is not equal to three, which is a true 
statement, and  means the same thing, that two is not equal to three.

Less than, less than or 
equals, greater than, 
greater than or equals

, , ,  mean, respectively,  is less than ;  is less than or 
equal to ;  is greater than ;  is greater than or equal to .

Not less than, not greater 
than

 means that  is not less than . This may be because  or . 
Similarly  means that  is not greater than . This may be because  
or .

Alternatives introduced by 
comma

The comma, “,” introduces an alternative. For example, , means, “  is 
not equal to negative infinity and  is not equal to nullity.”

Alternatives introduced by 
plus and minus

 introduce the alternatives,  and .

When The colon, “:” means “when” or “such that.” For example,  
means, “  plus infinity equals infinity, when  is not equal to negative infinity or 
nullity.”

If then  means that if  is true then  is true. It is also read as, “  implies .”

If and only if  means, “if  is true then  is true and if  is true then  is true”. This is 
also read as, “  is true if and only if  is true.”

There exists an  means, “there exists an .”

For all  means, “for all .”

And  is true when both of  are true, and is false when either or both of  
are false. This is read as “  and .”

Or  is true when either or both of  are true, and is false when both of  
are false. This is read as “  or .”

3 2–( )+ 3 2– 1= = 2 3 4–( )×( ) 2 1–( )×( ) 2–= =

= ≠

a¬ a a  ¬
2 3≠

2 3=( )¬

a b< a b≤ a b> a b≥ a b a
b a b a b

a b</ a b a b≥ a Φ=
a b\> a b a b≤

a Φ=

a ∞ Φ,–≠ a
a

a± +a a–

a ∞+ ∞ : a ∞ Φ,–≠=
a a

a b⇒ a b a b

a b⇔ a b b a
a b

a∃ a

a∀ a

a b∧ a b, a b,
a b

a b∨ a b, a b,
a b
112



Notation
Sign The function  is used as a shorthand so that  when , 
 when ,  when , and  when . 

sgn a( ) sgn a( ) 1–= a 0<
sgn a( ) 0= a 0= sgn a( ) 1= a 0> sgn a( ) Φ= a Φ=
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APPENDIX 3 Annotated Bibliography
History of zero 1 Anonymous. A history of zero at http://www-groups.dcs.st-and.ac.uk/
~history/HistTopics/Zero.html accessed on 14 February, 2008.

This article on the history of zero is clearly written with a very light use of 
mathematical formulae. It has good cross-references to other web-based 
material, but has very limited citations to paper texts.

Division by zero 2 Anonymous. Division by zero at http://en.wikipedia.org/wiki/
Division_by_zero accessed on 7 March, 2008.

This article, intended for the general reader, reviews various mathematical 
facts relating to division by zero. It is an excellent source of fallacies.

James Anderson 3 Anonymous. James Anderson (Computer Scientist) at http://en.wikipedia.org/
wiki/James_Anderson_(computer_scientist) Accessed on 2 April 2009.

This Wikipedia article presents some of my biography and describes the events 
surrounding stories by the BBC on my work. It also gives a summary of my work 
and relates it to other works. The biographical details are correct, but the 
technical summaries are faulty. Wikipedia’s rules prevent me from correcting an 
article on myself and no Wikipedia author has checked facts with me. 
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Nonetheless the errors in the article are very gradually being weeded out by 
Wikipedia authors.

First paper introducing the 
point at nullity and 
perspexes

4 J. A. D. W. Anderson, “Representing geometrical knowledge,” in Phil. Trans. 
R. Soc. Lond., series B, vol. 352, no. 1358, pp. 1129 - 1139.

This paper introduces the point at nullity via a geometrical construction in 
perspective space. Some calculations in projective geometry are made total by 
inclusion of this point, but the resulting geometry is not arithmetised. This 
paper also introduces the perspective simplex (perspex) which describes 
geometrical shapes and transformations. The goal of developing a logical 
perspex which can be used to programme a computer is made explicit.

Arithmetisation of 
transreal numbers

5 J. A. D. W. Anderson, “Perspex Machine VII: The Universal Perspex 
Machine” in Vision Geometry XIV, Longin Jan Lateki, David M. Mount, 
Angela Y. Wu, Editors, Proceedings of SPIE Vol. 6066 (2006).

This computational article describes transreal arithmetic in terms of extended 
operations of rational arithmetic. It is the first occasion on which it is proposed 
to teach transreal arithmetic in schools. It is argued that nullity is a number 
because it is a solution to a trigonometric equation. It is argued that the Turing 
machine is inherently spatial because Turing states that the machine’s symbols 
are compact spaces. The Perspex machine is simplified so that it operates on 
general-linear transformations, not the more complicated perspective 
transformations of earlier versions of the machine. It is argued that the Perspex 
machine can compute with any badly formed formulae. A number of 
philosophical issues are dealt with and NaN is criticised. The chapter on NaN
in the present book contains a more incisive criticism of NaN, though it does 
not reproduce all of the arguments in the paper.

Axioms of transreal 
numbers

6 J. A. D. W. Anderson, Norbert Völker, Andrew A. Adams “Perspex Machine 
VIII: Axioms of Transreal Arithmetic” in Vision Geometry XV, Longin Jan 
Lateki, David M. Mount, Angela Y. Wu, Editors, Proceedings of SPIE Vol. 
6499 (2007).

This mathematical article presents the axioms of transreal arithmetic and some 
notation for referring to various sets of transnumbers. It describes how the 
axioms are translated into higher order logic and are proved consistent in a 
computer proof system. There is no description of the proof itself, though the 
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paper contains a pointer to an on-line version of the proof. Many elementary 
theorems derived by the computer proof system are also given.

Topology of transreal 
numbers

7 J. A. D. W. Anderson, “Perspex Machine XI: Topology of the Transreal 
Numbers” in IMECS 2008, S.I. Ao, Oscar Castillo, Craig Douglas, David 
Dagan Feng, Jeong-A Lee Editors, Hong Kong, pp. 330-338, March (2008).

This mathematical article presents the topology of the transreal numbers and 
shows how the two’s complement encoding of numbers describes 
transintegers better than integers. This is the first paper in which the signed 
infinities are taken to be disconnected from the real number line.

New mathematics 8 E.Biggs & S. Roberts, Teaching Primary Mathematics, Holmes McDougal, 
Edinburgh, 1986.

This book, for primary school teachers, presents practical examples and 
teaching methods used in the new mathematics.

Wheels 9 J. Carlström: “Wheels — on division by zero” Mathematical Structures in 
Computer Science, 14(2004): no. 1, 143-184. Also available at http://
www.math.su.se/~jesper/research/wheels on 14 February, 2008.

This mathematical article deals with division by an element zero of a ring. The 
generalisation of division is perfectly natural from an algebraic point of view, 
but does not preserve the maximum possible information about magnitude and 
sign when applied to real numbers. The arithmetic of wheels is quite different 
from transarithmetic. For example, the distributivity laws are different in the 
two approaches.

Logic of real arguments 10 A. Fisher The Logic of Real Arguments, Cambridge University Press, 1988.

This book encourages the general reader to rely on expert opinion less, by 
assessing arguments, written in English, for themselves. The reader is shown 
a three step procedure for assessing arguments. Firstly, the argument is 
identified by looking for linguistic cues indicating inferences, and by 
supplying any missing inferences that are needed to make a good argument. 
Secondly, the inferential pathways through the argument are recorded in a 
diagram or in a linear, textual form. Finally, the argument is tested by applying 
the criterion of assertabiliy – judging by appropriate standards of evidence or 
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appropriate standards of what is possible, could the premises be true and the 
conclusion false? If so, the argument is unsound, otherwise it is sound.

The book promotes the Principle of Charity, that one reads the best argument 
into a text that it can bear, or else treats the text as not presenting any argument 
if no good argument can be read into it. The motive for this is to extract as 
much useful information from the text as possible. Analysing arguments is not 
to be taken as an exercise in scoring points off the author.

The methods in the book can be used in reverse – to test one’s own written 
arguments and improve their written expression.

The book deals with various topics in the social sciences and has chapters on 
accessing scientific arguments, the philosophical basis of the method, and an 
introduction to formal logic.

Mathematical Statistics 11 J. E. Freund & R.E. Walpole, Mathematical Statistics, Prentice Hall, 
Englewood Cliffs, New Jersey, USA, 3rd edn. 1980, originally 1962.

This text book introduces mathematical statistics. It has some discussion of 
practical, statistical tests.

NaN 12 IEEE Standard 754 for Binary Floating-Point Arithmetic (ANSI/IEEE Std 
754-1985).

This international standard describes the layout of bit patterns in floating-point 
numbers. The standard does not use a formal notation checked by computer 
and, consequently, contains some ambiguities. The computing industry has, 
however, resolved these ambiguities by maintaining hardware designs that are 
compatible with early reference hardware. Thus, the standard can be read in a 
consistent way. The standard defines bit patterns that denote objects that are 
Not a Number, NaN. It is defined that NaN  NaN for all of these objects. I 
hold that this is dangerous because it breaks a cultural stereotype amongst 
mathematicians, computer programmers, and the general public, in that they 
expect any object to be equal to itself. I propose that it would be safer to replace 
NaN with nullity because nullity adheres to this cultural stereotype. The 
arithmetical properties of nullity have been formally checked by computer.

≠
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Bottom type, programming 
languages

13 B.C. Pierce, Types and Programming Languages, MIT Press, Cambridge 
Massachusetts, 2002.

This text book describes how to use type theory to design safe, computer 
languages. The structure of a languages is described formally by a recursive 
grammar and its meaning is described formally by an operational semantics. 
The operational semantics describes how terms in the grammar change the sate 
of an abstract machine. High levels of abstraction are used to analyse the 
properties of a language and low levels are used to implement it. The book is 
supported by on-line resources.

The book describes the bottom type as an empty type, with no elements, that 
is a subtype of every type. This is analogous to the empty set which has no 
elements and is a subset of every set. The bottom type has several uses. For 
example, a function whose return type is the bottom type does not return to its 
caller.

Type theory cannot perform compile time checks on division by zero using 
ordinary number systems. I note that no such check is required if transreal 
arithmetic is used so a type system can cope with division by zero. The use of 
transreal arithmetic would make typed languages even safer.

Bottom element, 
Denotational Semantics

14 D. Scott, “Data Types as Lattices” in Proceedings of the International 
Summer Institute and Logic Colloquium, Kiel, published as Lecture Notes in 
Mathematics, Springer, Berlin, vol 499, pp. 579-651, (1975). There is a paper 
by the same name in SIAM J. Comput. Vol. 5, Issue 3, pp. 522-587 (1976).

The book chapter is a mathematical paper which describes computation in 
terms of the power set of non-negative integers. In this model, bottom is the 
empty set. Bottom may be used to denote that the result of a computation is 
undefined. The book chapter does not have a bibliography.

Ordinary calculus 15 M. Spivak, Calculus, W.A. Benjamin, London, (1967).

This text book provides a very clear introduction to calculus. It uses many 
sketches of graphs to present technical points in an easy way. It gives both 
examples and counter-examples of continuity, differentiability, and the like. It 
discusses the more common notations for derivatives.
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INDEX 1 Subjects
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A
Africa 82
alternatives

introduced by comma 13, 
112

introduced by plus or minus 
14, 112

arithmetical operations
addition 13, 88, 111
division 13, 88, 111
multiplication 13, 88, 111
subtraction 13, 89, 111

axioms
field 21
transreal 11–21, 116–117

B
Bachelor of Education 81
bottom ix, 6, 51–53, 68, 105, 
106, 119
British Council 82
British Empire 82

C
calculus

differential 5–6, 119
integral 119

category theory 6
Certificate of Education 75
compilers 96

D
denotational semantics 6
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E
Examination Boards 81, 83, 93

F
fraction

proper transreal 27
transreal 27

G
Geek 24
Ghana 82

H
Her Majesty’s Inspector 80, 93

I
Indian mathematics 3–5
infinity 88, 89

negative 4, 5, 54–55, 88, 90, 
111

positive 4, 5, 54–55, 90, 91, 
111

unsigned 53–54

K
Kings College London 80

L
Local Education Authority 78, 
80, 81
logical connectives

and 14, 112
for all 14, 112
if and only if 14, 112
if then 14, 112

not 13, 112
or 14, 112
there exists 14, 112
when 14, 112

M
mathematics

new 75–93
total 86, 93

maximum (of a list) 97–98
mean (arithmetic) 99–100
membership (of a list) 96–97
multiplicative inverse 13, 111

N
not a number

NaN v, 6–7, 59–73, 116, 118
Compare with: numbers

nullity v, viii, ix, 4, 5, 11–21, 
23–49, 55, 59–73, 88, 89, 90, 
95–103, 105, 111, 112, 116, 118

point at 116
numbers

complex 25
counting (integers) 25
denominator 27
finite 25
fractions 25
infinite 4, 25, 26
negative 25
non-finite 4, 25, 26
numerator 27
real 25
strictly transreal 13, 111
transcomplex 25
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transreal 11–21, 116–117
See also: infinity, nullity, 

zero
Compare with: not a number

numerals
Arabic 92
Roman 92

P
parentheses 13, 111
Peano axioms 90
perspex 116
Principle of Charity 66, 106, 118

R
reciprocal 13, 51–58, 111
relational operators

equals 13, 112
greater than 13, 112
greater than or equals 13, 

112
less than 13, 112
less than or equals 13, 112
not equals 13, 112
not greater than 55, 112
not less than 55, 112

Royal Air Force 92
Russia 82

S
set theory 6
sign 14, 113
Sputnik 82, 83
statistics 118
supremum (of a list) 98

T
Teacher Training Association 80
totality 95

U
United States of America 73, 82
universities 80, 81, 82, 91, 93

V
variance 100–101

W
wheels 6, 117
Wikipedia 59–68, 106, 115

Z
zero

division by 1–8, 51–58, 87, 
115
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