
James A.D.W. Anderson

Manchester 2008

Page 1 of 65
The Perspex Machine

Dr James A.D.W. Anderson
Computer Science
Reading University

England
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 2 of 65
Agenda
• Part 1 – Transreal arithmetic: avoiding exceptions

• Part 2 – 4D Perspex Machines: robustness to hardware
faults

• Part 3 – 2D Perspex Machines: fast computation
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 3 of 65
Part 1 – Transreal Arithmetic
• Transreal arithmetic uses only the existing algorithms

of arithmetic, but ignores the injunction not to divide
by zero, in such a way that it preserves the maximum
possible information about the magnitude and sign of
numbers. It has no exceptions

• Transreal arithmetic has been proved consistent by
translating its axioms into higher order logic and
testing them in a computer proof system

• Over 40,000 people have obtained a copy of the
published paper describing the consistency proof. No
fault has been reported, but only one person has
acknowledged trying to find a fault
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com
http://www.bookofparagon.com/Mathematics/PerspexMachineVIII.pdf

James A.D.W. Anderson

Manchester 2008

Page 4 of 65
Transreal Numbers
Transreal numbers are fractions, , of a real numerator,

, and a real denominator, , such that
f

n d f n d⁄=
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 5 of 65
Strictly Transreal Numbers
The strictly transreal numbers are:

• Positive infinity,

• Nullity,

• Negative infinity,

Note that a fraction with a strictly transreal numerator
and/or denominator simplifies to a fraction with a real
numerator and denominator

∞ 1
0
---=

Φ 0
0
---=

∞– 1–
0

------=
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 6 of 65
Canonical Form
The canonical form of a transreal number, :

• Is when and

• Is when

• Is when and

• Is where and and ,
where is the highest, common, factor between
when are both integral

• Is when is irrational

n d⁄

1 0⁄ n 0> d 0=

0 0⁄ n d 0= =

1 0⁄– n 0< d 0=

n′ d′⁄ n kn′= d kd′= d′ 0>
k n d,

n d,

nd 1–() 1⁄ nd 1–
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 7 of 65
Irrational Fractions
There are not enough names to name every real number
so we often chose not to write irrational fractions in
canonical form. For example:

•

Here is not in canonical form. Nonetheless, we may
write irrational fractions in canonical form by
introducing an intermediate variable. For example:

• where

f π 2÷ π
1
--- 2

1
---÷ π

1
--- 1

2
---× π 1×

1 2×
------------ π

2
---= = = = =

π 2⁄

f n
1
---= n π

2
---=
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 8 of 65
Division and Multiplication
Division is as easy as multiplication:

• Division by zero occurs when at least one of is
zero

a
b
--- c

d
---÷ a

b
--- d

c
---×=

b c d, ,
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 9 of 65
Division and Multiplication

• I used to require that every number, , , is
reduced to canonical form before it is operated on, but
it is possible to take a more relaxed approach:

• If the denominator of any argument to a multiplication
is zero then as many factors are included as
are needed to make all of the denominators non-
negative

a
b
--- c

d
---÷ a

b
--- d

c
---×=

a b⁄ c d⁄ d c⁄

1–() 1–()⁄
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 10 of 65
Addition and Subtraction
Addition and subtraction are harder than division and
multiplication:

• in general, but

• in particular

• Subtraction occurs when at least one of the arguments
to addition is negative

a
b
--- c

d
---+ a d×() c b×()+

b d×
--=

1±
0

------ 1±
0

------+ 1±() 1±()+
0

-----------------------------=
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 11 of 65
Addition and Subtraction

• in general, but

• in particular

• I used to require that every number , , is
reduced to canonical form before it is operated on, but
it is possible to take a more relaxed approach:

• If any argument to an addition has a zero denominator
then that fraction is reduced to canonical form and as
many factors are included as are needed to
make all of the denominators non-negative

a
b
--- c

d
---+ a d×() c b×()+

b d×
--=

1±
0

------ 1±
0

------+ 1±() 1±()+
0

-----------------------------=

a b⁄ c d⁄ k 0⁄

1–() 1–()⁄
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 12 of 65
Topological Spaces
The open sets of the transreal numbers arise from:

And can be visualised as:

• is the extended-real line

R ∞–{ } ∞{ } Φ{ }, , ,

∞∞–

Φ

R

∞–{ } R ∞{ }∪ ∪
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 13 of 65
Two’s Complement
Two’s complement arithmetic is valid in itself, but using
complement as negation is faulty in one case

0

4–

1–

2

3

2–

3–

1

© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 14 of 65
Two’s Complement

• The complement of the most negative number is not its
negation

• Almost every computer suffers this weird-number fault

0

4–

1–

2

3

2–

3–

1

4–()– 4–=
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 15 of 65
Trans Two’s Complement

0

Φ

1–

2

∞

2–

∞–

1

• The complement of the most negative number is now
its negation

• And the complement of nullity is its negation

∞–()– ∞=

Φ– Φ=
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 16 of 65
Trans Two’s Complement
Trans two’s complement removes the weird-number
fault and preserves the topology of the transreal numbers

0

Φ

1–

2

∞

2–

∞–

1

∞∞–

Φ

R

© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 17 of 65
Trans Two’s Complement
Trans two’s complement:

• Removes the two’s complement fault

• Extends to multi-precision transintegers

• Extends to transfixed-point numbers

• Gives transfixed-point programming superior
exception handling to floating-point arithmetic,
reversing the current situation

• Extends to floating-point arithmetic so that it can
match the exception handling of transfixed arithmetic
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 18 of 65
Against NaN
Contemporary floating-point arithmetic uses

• breaks the cultural stereotype amongst
mathematicians, programmers, and the general public
that any object is equal to itself. This makes
dangerous

• breaks the Lambda calculus, because
 is incompatible with Lambda equality,

rendering the theory of computation void, unless
is handled by adding unnecessary complexity to the
calculus

NaN

NaN NaN≠

NaN

NaN
NaN NaN≠

NaN
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 19 of 65
Against NaN
• There is no mathematical theory underlying so

every programmer is thrown back on his or her own
resources. This encourages inconsistent uses of in
programming teams

By contrast:

• Nullity is equal to itself and has a consistent
mathematical theory supporting it

• Therefore, nullity is much safer than

NaN

NaN

NaN
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 20 of 65
Minus Zero
IEEE floating-point arithmetic has an object minus zero
which represents an infinitesimally small, negative
number

• IEEE arithmetic has no representation for an
infinitesimally small, positive number

• IEEE test against zero requires a call of the function
abs and is therefore slow, even where abs is in-lined

• Transreal arithmetic is total, but has no object minus
zero and has no infinitessimal numbers of any kind

• A floating-point model of transreal arithmetic has no
role for minus zero or any infinitessimal number
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 21 of 65
Part 1 – Conclusion
The transreal numbers are the best candidate for the
principal augmentation of the real numbers because:

• They contain the real numbers and preserve the
maximum possible information about the magnitude
and sign of numbers on division by zero

• They appear to be consistent with all extensions of the
real numbers

• They appear to support faster, cheaper, and safer
computer processors than the real numbers or any
extension of them, as we shall see

• They might solve some physical problems
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 22 of 65
Part 2 - The 4D Perspex Machine
• The Perspex Machine unifies the Turing Machine with

geometry so that any symbolic computation can be
performed geometrically, though some geometrical
computations have no symbolic counterpart

• The Perspex Machine operates on perspective
simplexes (perspexes), expressed in transreal co-
ordinates

• Even when simulated approximately on a digital
computer, the Turing computable, geometrical
properties of the Perspex Machine are useful
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 23 of 65
Perspex as a Matrix
• A perspex is a matrix of transreal numbers

• It is useful to describe the perspex by the column
vectors

• A perspex describes geometrical transformations

4 4×

x y z t, , ,

x1 y1 z1 t1

x2 y2 z2 t2

x3 y3 z3 t3

x4 y4 z4 t4
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 24 of 65
Perspex as a Simplex
• The column vectors of a perspex describe the vertices

of a simplex (here a tetrahedron)

• A perspex describes geometrical shapes

x

y

z

t

© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 25 of 65
Perspex as an Instruction
The column vectors of a perspex describe an instruction

;

• The superscript arrow denotes indirection. For
example, is a column vector denoting a position in
4D space, but is the contents of that point

• Every point in perspex space contains a perspex, which
may be the halting perspex, , which has all elements
nullity,

• A Perspex Machine is started by starting execution at
some point or points in space

xy z→ jump z11 t,()

x
x

H
Φ

© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 26 of 65
Perspex as an Instruction

 does the following:

• If then , otherwise

• If then , otherwise

• If then , otherwise

• unconditionally

• Control jumps from the current location, , to

jump z11 t,()

z11 0< j1 t1= j1 0=

z11 0= j2 t2= j2 0=

z11 0> j3 t3= j3 0=

j4 t4=

l l j+
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 27 of 65
Perspex as a Neuron
The perspex instruction can be implemented as an
artificial neuron stored at a location in spaceL

x

y

z

(j1, 0, 0, j4)

(0, j2, 0, j4)

(0, 0, j3, j4)

(0, 0, 0, j4)

L

© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 28 of 65
A Drawing Program
• Perspex programs look very much like networks of

biological neurons

Standard
cube

Drawing
program

Rotation
increment

Growth
site

Rotation
program

Control jumps
forward in time

Entry pointCurrent
transformation
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 29 of 65
Perspex Programs
• Perspex programs grow by writing instructions and die

by writing the halting perspex, H

Grown
rotated
cube

Grown
drawing
programStandard

cube

Current
transformation

Dead code
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 30 of 65
Perspex Programs

Standard cube

Rotated cube
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 31 of 65
Isolinear Programs
• Turing programs can be laid out as perspexes at

integral (integer numbered) locations on a line or on
the nodes of an integral lattice in space

• The space is not unique, it is an isomer of all of the
programs that it contains

• This contributes the iso part of the name isolinear
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 32 of 65
Isolinear Programs
• Every point in space can be filled with a linear blend

of its neighbouring lattice nodes. This produces a
continuum of programs filling space

• Starting the Perspex Machine at nearby points in this
continuum computes in nearly the same way. That is,
all of the reads, writes, and jumps are nearly the same

• This contributes the linear part of the name isolinear
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 33 of 65
Isolinear Programs
• Are robust to errors in the starting point

• Are robust to missing instructions

• Can have non-halting Turing programs as singularities
in a neighbourhood of programs that are Turing
computable and which compute in nearly the same way
as the non-halting program – except that they halt!

• Degrade gracefully with increasing errors in starting
conditions and make partial recoveries, as predicted by
the Walnut Cake Theorem

• Can be approximated by a sum of band-pass-filter
channels. So one instruction can approximate many
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 34 of 65
Isolinear Programs
• The isolinear version of the drawing program is robust

to error, , in the starting pointdt

dt = 0 dt = 0.001 dt = 0.01

dt = 0.1 dt = 0.2 dt = 0.3
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 35 of 65
Isolinear Programs
• The program has an isolated, non-halting, program at

 surrounded by computable programsdt 0.2–=

dt = 0 dt = -0.001 dt = -0.01

dt = -0.1 dt = -0.2 dt = -0.3
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 36 of 65
Isolinear Programs
• The program partially recovers at dt 4 0.3+=

dt = 3 - 0.3 dt = 3 +0.3 dt = 4 - 0.3

dt = 4 + 0.3 dt = 5 - 0.3 dt = 5 + 0.3
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 37 of 65
Robustness to Machine Error
The 4D isolinear programs are not practical:

• Operating on matrices is expensive

• General linear approximations to programs might be
chaotic

• There is no convolution theorem to show that the
execution of the composition of programs is equal to
the composition of the execution of programs
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 38 of 65
Robustness to Machine Error
The 4D isolinear programs are still useful:

• In the Turing machine, similarity of input tapes implies
similarity of output tapes. Perspex programs are Turing
complete, therefore they are robust to faults

• Convergence of computation might be enforced in
search algorithms by executing low frequency program
bands before higher frequency program bands
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 39 of 65
Robustness to Machine Error
Regardless of their utility, Perspex programs give us
some heuristics for implementing programs that are
robust to machine errors:

• Have one instruction so that it cannot be mis-selected

• Note that efficient floating-point programs require at
least two instructions, but fixed-point programs can
execute numerical programs efficiently with one
instruction. So use fixed-point arithmetic

• Operate on linear blends of data to reduce sensitivity to
specific data, but exclude nullity from the blend,
otherwise it would drive all values to nullity
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 40 of 65
Robustness to Machine Error
• Use nullity as the only halting flag so that there is only

one way to stop a program

• Nullity cannot be approximated by any linear blend of
other numbers. This makes it very hard to generate an
accidental halt

• Use a redundant code for nullity so that hardware faults
are unlikely to generate it and are, therefore, unlikely
to accidentally halt a running program or re-start a
halted one
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 41 of 65
Robustness to Machine Error
• Jump in many components simultaneously so as to

reduce the possibility of jumping into an infinite loop

• Deliberately introduce hardware faults to drive
programs out of infinite loops
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 42 of 65
Part 2 - Conclusion
The 4D Perspex Machines are not practical, but:

• Using a single instruction prevents the wrong
instruction being selected

• A general-linear instruction is robust to errors in data

• Jumping in many components simultaneously reduces
the risk of jumping into an infinite loop

• Use nullity as the halting instruction because it is hard
to fake

• Allow hardware faults because they break infinite
loops
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 43 of 65
Part 3 – The 2D Perspex Machine
Operates on numbers and aims to achieve truly massive,
fine-grain parallelism, with extremely fast memory by:

• Aggressively simplifying the processors so that they
are very much smaller than conventional processors

• Passing tokens on an escalator bus so that all
processors can simultaneously receive and transmit
tokens in every direction with zero I/O latency

• Holding all working memory in on-chip cache, thereby
accessing memory at processor speeds

• Running I/O from every edge of the chip with zero
latency so that there is no memory wall
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 44 of 65
Aggressive Simplification
FPGA implementation of the Perspex Machine says we
can achieve at least 4k processors on a chip
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 45 of 65
Aggressive Simplification
• The only arithmetical operation is

• All other arithmetical operations are synthesised from
this one, because fabricating them would waste space
in most of the processors on a chip

• The floating-point Perspex Machine also has one non-
arithmetical operation

A B C+× R→
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 46 of 65
Aggressive Simplification
Fetchless architecture:

• Minimises circuitry

• Reduces on-chip fetch-latency to zero

Achieved by token passing
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 47 of 65
Aggressive Simplification
• Tokens transmitted, conditionally on the sign of

, through every edge of the square
processor and internally

• Grey arrow blocked, white transmitted

A B C+× R→
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 48 of 65
Aggressive Simplification

• There are four signs – negative, zero, positive, nullity –
encoded in two sign bits so all selectors are maximally
efficient

• If desired, each of the four separate signs can transmit
a token in a different direction
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 49 of 65
Aggressive Simplification

There are no arithmetical error states so:

• There is no error handling circuitry on a processor

• Code is more secure
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 50 of 65
Processor Tile

• Processor tile is replicated everywhere in the interior of
the chip

Result
token

Escalator step
N, S, E, W

Processor
in centre of
tile
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 51 of 65
Escalator Bus

• Escalator bus emerges from the processor tiles
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 52 of 65
Escalator Bus

• Every processor can simultaneously read from and
write to the escalator bus on every processor clock
cycle with zero latency
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 53 of 65
Programming: an Army of Ants
• Single function “ants”

• No stored program

• Parameters are set up

• Function is invoked

• Result is propagated
conditionally

• Programs are flow networks

• Both control and data flow
through the network

• Flows can be modified at
run time
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 54 of 65
Programming: Initial Orders
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 55 of 65
Programming: Is it Possible?
Yes, we have done it:

• Emulated a Turing complete machine

• Eliminated race conditions by using a single thread

• Eliminated race conditions by travel-time inequalities

• Implemented fully pipelined, mathematical functions
with a throughput of one result per clock cycle, and a
latency down to half that of the Itanium 2 on:
reciprocal, reciprocal square root, square root,
exponential
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 56 of 65
Programming: Is it Possible?
• Pipelines do not break on branches, they just tee-off in

some city-block direction within the 2D surface of a
chip

• Non-recursive subroutines have call and return
implemented by branching so when they are in-lined
they do not break pipelines

• Multiple calling points for a single subroutine
introduce bubbles in each pipeline, and may break the
pipeline

• Loops force pipeline data into blocks of a size that will
fit inside the loop, this breaks the pipeline
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 57 of 65
Sum of Two Factorials
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 58 of 65
Compilation
• Perspex architecture is Turing complete, but currently

needs hand-coding or a restricted (domain specific)
language

• Hand-coding with library calls is straightforward

• General compilation is straightforward, but uses a
Perspex chip as a co-processor

• Compilation via single assignment (functional
programming) is attractive because of pipelining

• Systolic programming is highly applicable

• Pipeline programming is highly applicable
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 59 of 65
I/O

• Perspex chips can be tiled together with one escalator
input and one escalator output per edge of the chip
running at 150 M Tokens Per Second

Perspex
chip

i/o chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

i/o chip

i/o chip

i/o chip i/o chip i/o chip

i/o chip

i/o chip

i/o chip

i/o chipi/o chipi/o chip
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 60 of 65
I/O

• Perspex chips have an address horizon, not an address
space, so arbitrarily many Perspex chips can be tiled
together

Perspex
chip

i/o chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

i/o chip

i/o chip

i/o chip i/o chip i/o chip

i/o chip

i/o chip

i/o chip

i/o chipi/o chipi/o chip
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 61 of 65
Part 3 – Conclusion
The current specification of the Perspex chip has:

• At least 4k processors

• Processors clocked at 500 MHz

• 4 input channels, each running at 150 M Tokens Per
Second

• 4 output channels, each running at 150 M Tokens Per
Second
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 62 of 65
Part 3 – Conclusion
The software environment consists of:

• An FPGA implementation

• A functional simulator

• Loaders

• Assemblers

• A compiler
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 63 of 65
Part 3 – Conclusion
• We have implemented conventional programs

• We have implemented pipelined programs

• We have implemented systolic programs

• We get better pipeline latencies than other architectures

• We get better pipeline throughput than other
architectures

• We can sometimes match, but can never beat, systolic
architectures

• It is not practical to implement programmable systolic
arrays in ASIC, but Perspex is a viable alternative
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 64 of 65
Part 3 – Conclusion
• Compiling by travel-time inequalities builds in some

robustness to asynchronous operation of the array of
processors

• Asynchronicity can be built in to the array to smooth
power usage
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

James A.D.W. Anderson

Manchester 2008

Page 65 of 65
Overall Conclusion
• The transreal numbers are the best candidate for the

principal augmentation of the real numbers

• Transintegers remove the weird number from two’s
complement arithmetic

• Transreal numbers have better semantics than IEEE
floating-point numbers

• The 4D Perspex Machines are impractical, but they do
give us some heuristics for designing machines that
accept hardware errors

• The 2D Perspex Machines are practical, and can be
implemented in the surface of a silicon chip
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

	The Perspex Machine
	Agenda
	Part 1 – Transreal Arithmetic
	Transreal Numbers
	Strictly Transreal Numbers
	Canonical Form
	Irrational Fractions
	Division and Multiplication
	Addition and Subtraction
	Topological Spaces
	Two’s Complement
	Trans Two’s Complement
	Against NaN
	Minus Zero
	Part 1 – Conclusion
	Part 2 - The 4D Perspex Machine
	Perspex as a Matrix
	Perspex as a Simplex
	Perspex as an Instruction
	Perspex as a Neuron
	A Drawing Program
	Isolinear Programs
	Robustness to Machine Error
	Part 2 - Conclusion
	Part 3 – The 2D Perspex Machine
	Aggressive Simplification
	Processor Tile
	Escalator Bus
	Programming: an Army of Ants
	Programming: Initial Orders
	Programming: Is it Possible?
	Sum of Two Factorials
	Compilation
	I/O
	Part 3 – Conclusion
	Overall Conclusion

