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Agenda
• Part 1 – Transreal arithmetic: avoiding exceptions

• Part 2 – 4D Perspex Machines: robustness to hardware 
faults

• Part 3 – 2D Perspex Machines: fast computation
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Part 1 – Transreal Arithmetic
• Transreal arithmetic uses only the existing algorithms 

of arithmetic, but ignores the injunction not to divide 
by zero, in such a way that it preserves the maximum 
possible information about the magnitude and sign of 
numbers. It has no exceptions

• Transreal arithmetic has been proved consistent by 
translating its axioms into higher order logic and 
testing them in a computer proof system

• Over 40,000 people have obtained a copy of the 
published paper describing the consistency proof. No 
fault has been reported, but only one person has 
acknowledged trying to find a fault
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Transreal Numbers
Transreal numbers are fractions, , of a real numerator, 

, and a real denominator, , such that 
f

n d f n d⁄=
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Strictly Transreal Numbers
The strictly transreal numbers are:

• Positive infinity, 

• Nullity, 

• Negative infinity, 

Note that a fraction with a strictly transreal numerator 
and/or denominator simplifies to a fraction with a real 
numerator and denominator

∞ 1
0
---=

Φ 0
0
---=

∞– 1–
0

------=
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Canonical Form
The canonical form of a transreal number, :

• Is  when  and 

• Is  when 

• Is  when  and 

• Is  where  and  and , 
where  is the highest, common, factor between  
when  are both integral

• Is  when  is irrational

n d⁄

1 0⁄ n 0> d 0=

0 0⁄ n d 0= =

1 0⁄– n 0< d 0=

n′ d′⁄ n kn′= d kd′= d′ 0>
k n d,

n d,

nd 1–( ) 1⁄ nd 1–
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Irrational Fractions
There are not enough names to name every real number 
so we often chose not to write irrational fractions in 
canonical form. For example:

•

Here  is not in canonical form. Nonetheless, we may 
write irrational fractions in canonical form by 
introducing an intermediate variable. For example:

•  where 

f π 2÷ π
1
--- 2

1
---÷ π

1
--- 1

2
---× π 1×

1 2×
------------ π

2
---= = = = =

π 2⁄

f n
1
---= n π

2
---=
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Division and Multiplication
Division is as easy as multiplication:

• Division by zero occurs when at least one of  is 
zero

a
b
--- c

d
---÷ a

b
--- d

c
---×=

b c d, ,
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Division and Multiplication

• I used to require that every number, , ,  is 
reduced to canonical form before it is operated on, but 
it is possible to take a more relaxed approach:

• If the denominator of any argument to a multiplication 
is zero then as many factors  are included as 
are needed to make all of the denominators non-
negative

a
b
--- c

d
---÷ a

b
--- d

c
---×=

a b⁄ c d⁄ d c⁄

1–( ) 1–( )⁄
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com


James A.D.W. Anderson

Manchester 2008

Page 10 of 65
Addition and Subtraction
Addition and subtraction are harder than division and 
multiplication:

•  in general, but

•  in particular

• Subtraction occurs when at least one of the arguments 
to addition is negative

a
b
--- c

d
---+ a d×( ) c b×( )+

b d×
----------------------------------------=

1±
0

------ 1±
0

------+ 1±( ) 1±( )+
0

-----------------------------=
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Addition and Subtraction

•  in general, but

•  in particular

• I used to require that every number , ,  is 
reduced to canonical form before it is operated on, but 
it is possible to take a more relaxed approach:

• If any argument to an addition has a zero denominator 
then that fraction is reduced to canonical form and as 
many factors  are included as are needed to 
make all of the denominators non-negative

a
b
--- c

d
---+ a d×( ) c b×( )+

b d×
----------------------------------------=

1±
0

------ 1±
0

------+ 1±( ) 1±( )+
0

-----------------------------=

a b⁄ c d⁄ k 0⁄

1–( ) 1–( )⁄
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Topological Spaces
The open sets of the transreal numbers arise from:

And can be visualised as:

•  is the extended-real line

R ∞–{ } ∞{ } Φ{ }, , ,

∞∞–

Φ

R

∞–{ } R ∞{ }∪ ∪
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Two’s Complement
Two’s complement arithmetic is valid in itself, but using 
complement as negation is faulty in one case

0

4–

1–

2

3

2–

3–

1
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Two’s Complement

• The complement of the most negative number is not its 
negation 

• Almost every computer suffers this weird-number fault

0

4–

1–

2

3

2–

3–

1

4–( )– 4–=
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Trans Two’s Complement

0

Φ

1–

2

∞

2–

∞–

1

• The complement of the most negative number is now 
its negation 

• And the complement of nullity is its negation 

∞–( )– ∞=

Φ– Φ=
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Trans Two’s Complement
Trans two’s complement removes the weird-number 
fault and preserves the topology of the transreal numbers

0

Φ

1–

2

∞

2–

∞–

1

∞∞–

Φ

R
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Trans Two’s Complement
Trans two’s complement:

• Removes the two’s complement fault

• Extends to multi-precision transintegers

• Extends to transfixed-point numbers

• Gives transfixed-point programming superior 
exception handling to floating-point arithmetic, 
reversing the current situation

• Extends to floating-point arithmetic so that it can 
match the exception handling of transfixed arithmetic
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Against NaN
Contemporary floating-point arithmetic uses 

•  breaks the cultural stereotype amongst 
mathematicians, programmers, and the general public 
that any object is equal to itself. This makes  
dangerous

•  breaks the Lambda calculus, because 
 is incompatible with Lambda equality, 

rendering the theory of computation void, unless  
is handled by adding unnecessary complexity to the 
calculus

NaN

NaN NaN≠

NaN

NaN
NaN NaN≠

NaN
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Against NaN
• There is no mathematical theory underlying  so 

every programmer is thrown back on his or her own 
resources. This encourages inconsistent uses of  in 
programming teams

By contrast:

• Nullity is equal to itself and has a consistent 
mathematical theory supporting it

• Therefore, nullity is much safer than 

NaN

NaN

NaN
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Minus Zero
IEEE floating-point arithmetic has an object minus zero 
which represents an infinitesimally small, negative 
number

• IEEE arithmetic has no representation for an 
infinitesimally small, positive number

• IEEE test against zero requires a call of the function 
abs and is therefore slow, even where abs is in-lined

• Transreal arithmetic is total, but has no object minus 
zero and has no infinitessimal numbers of any kind

• A floating-point model of transreal arithmetic has no 
role for minus zero or any infinitessimal number
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Part 1 – Conclusion
The transreal numbers are the best candidate for the 
principal augmentation of the real numbers because:

• They contain the real numbers and preserve the 
maximum possible information about the magnitude 
and sign of numbers on division by zero

• They appear to be consistent with all extensions of the 
real numbers

• They appear to support faster, cheaper, and safer 
computer processors than the real numbers or any 
extension of them, as we shall see

• They might solve some physical problems
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Part 2 - The 4D Perspex Machine
• The Perspex Machine unifies the Turing Machine with 

geometry so that any symbolic computation can be 
performed geometrically, though some geometrical 
computations have no symbolic counterpart

• The Perspex Machine operates on perspective 
simplexes (perspexes), expressed in transreal co-
ordinates 

• Even when simulated approximately on a digital 
computer, the Turing computable, geometrical 
properties of the Perspex Machine are useful
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Perspex as a Matrix
• A perspex is a  matrix of transreal numbers

• It is useful to describe the perspex by the column 
vectors 

• A perspex describes geometrical transformations

4 4×

x y z t, , ,

x1 y1 z1 t1

x2 y2 z2 t2

x3 y3 z3 t3

x4 y4 z4 t4
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Perspex as a Simplex
• The column vectors of a perspex describe the vertices 

of a simplex (here a tetrahedron)

• A perspex describes geometrical shapes

x

y

z

t
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Perspex as an Instruction
The column vectors of a perspex describe an instruction 

; 

• The superscript arrow denotes indirection. For 
example,  is a column vector denoting a position in 
4D space, but  is the contents of that point

• Every point in perspex space contains a perspex, which 
may be the halting perspex, , which has all elements 
nullity, 

• A Perspex Machine is started by starting execution at 
some point or points in space

xy z→ jump z11 t,( )

x
x

H
Φ
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Perspex as an Instruction

 does the following:

• If  then , otherwise 

• If  then , otherwise 

• If  then , otherwise 

•  unconditionally

• Control jumps from the current location, , to 

jump z11 t,( )

z11 0< j1 t1= j1 0=

z11 0= j2 t2= j2 0=

z11 0> j3 t3= j3 0=

j4 t4=

l l j+
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Perspex as a Neuron
The perspex instruction can be implemented as an 
artificial neuron stored at a location  in spaceL

x

y

z

(j1, 0, 0, j4)

(0, j2, 0, j4)

(0, 0, j3, j4)

(0, 0, 0, j4)

L
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A Drawing Program
• Perspex programs look very much like networks of 

biological neurons

Standard
cube

Drawing
program

Rotation
increment

Growth
site

Rotation
program

Control jumps
forward in time

Entry pointCurrent
transformation
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Perspex Programs
• Perspex programs grow by writing instructions and die 

by writing the halting perspex, H

Grown
rotated
cube

Grown
drawing
programStandard

cube

Current
transformation

Dead code
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Perspex Programs

Standard cube

Rotated cube
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Isolinear Programs
• Turing programs can be laid out as perspexes at 

integral (integer numbered) locations on a line or on 
the nodes of an integral lattice in space

• The space is not unique, it is an isomer of all of the 
programs that it contains

• This contributes the iso part of the name isolinear
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Isolinear Programs
• Every point in space can be filled with a linear blend 

of its neighbouring lattice nodes. This produces a 
continuum of programs filling space

• Starting the Perspex Machine at nearby points in this 
continuum computes in nearly the same way. That is, 
all of the reads, writes, and jumps are nearly the same

• This contributes the linear part of the name isolinear
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Isolinear Programs
• Are robust to errors in the starting point

• Are robust to missing instructions

• Can have non-halting Turing programs as singularities 
in a neighbourhood of programs that are Turing 
computable and which compute in nearly the same way 
as the non-halting program – except that they halt!

• Degrade gracefully with increasing errors in starting 
conditions and make partial recoveries, as predicted by 
the Walnut Cake Theorem

• Can be approximated by a sum of band-pass-filter 
channels. So one instruction can approximate many
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Isolinear Programs
• The isolinear version of the drawing program is robust 

to error, , in the starting pointdt

dt = 0 dt = 0.001 dt = 0.01

dt = 0.1 dt = 0.2 dt = 0.3
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Isolinear Programs
• The program has an isolated, non-halting, program at 

 surrounded by computable programsdt 0.2–=

dt = 0 dt = -0.001 dt = -0.01

dt = -0.1 dt = -0.2 dt = -0.3
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Isolinear Programs
• The program partially recovers at dt 4 0.3+=

dt = 3 - 0.3 dt = 3 +0.3 dt = 4 - 0.3

dt = 4 + 0.3 dt = 5 - 0.3 dt = 5 + 0.3
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Robustness to Machine Error
The 4D isolinear programs are not practical:

• Operating on matrices is expensive

• General linear approximations to programs might be 
chaotic

• There is no convolution theorem to show that the 
execution of the composition of programs is equal to 
the composition of the execution of programs
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Robustness to Machine Error
The 4D isolinear programs are still useful:

• In the Turing machine, similarity of input tapes implies 
similarity of output tapes. Perspex programs are Turing 
complete, therefore they are robust to faults

• Convergence of computation might be enforced in 
search algorithms by executing low frequency program 
bands before higher frequency program bands
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Robustness to Machine Error
Regardless of their utility, Perspex programs give us 
some heuristics for implementing programs that are 
robust to machine errors:

• Have one instruction so that it cannot be mis-selected

• Note that efficient floating-point programs require at 
least two instructions, but fixed-point programs can 
execute numerical programs efficiently with one 
instruction. So use fixed-point arithmetic

• Operate on linear blends of data to reduce sensitivity to 
specific data, but exclude nullity from the blend, 
otherwise it would drive all values to nullity
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Robustness to Machine Error
• Use nullity as the only halting flag so that there is only 

one way to stop a program

• Nullity cannot be approximated by any linear blend of 
other numbers. This makes it very hard to generate an 
accidental halt

• Use a redundant code for nullity so that hardware faults 
are unlikely to generate it and are, therefore, unlikely 
to accidentally halt a running program or re-start a 
halted one
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Robustness to Machine Error
• Jump in many components simultaneously so as to 

reduce the possibility of jumping into an infinite loop

• Deliberately introduce hardware faults to drive 
programs out of infinite loops
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Part 2 - Conclusion
The 4D Perspex Machines are not practical, but:

• Using a single instruction prevents the wrong 
instruction being selected

• A general-linear instruction is robust to errors in data

• Jumping in many components simultaneously reduces 
the risk of jumping into an infinite loop

• Use nullity as the halting instruction because it is hard 
to fake

• Allow hardware faults because they break infinite 
loops
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Part 3 – The 2D Perspex Machine
Operates on numbers and aims to achieve truly massive, 
fine-grain parallelism, with extremely fast memory by:

• Aggressively simplifying the processors so that they 
are very much smaller than conventional processors

• Passing tokens on an escalator bus so that all 
processors can simultaneously receive and transmit 
tokens in every direction with zero I/O latency

• Holding all working memory in on-chip cache, thereby 
accessing memory at processor speeds

• Running I/O from every edge of the chip with zero 
latency so that there is no memory wall
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Aggressive Simplification
FPGA implementation of the Perspex Machine says we 
can achieve at least 4k processors on a chip
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Aggressive Simplification
• The only arithmetical operation is 

• All other arithmetical operations are synthesised from 
this one, because fabricating them would waste space 
in most of the processors on a chip

• The floating-point Perspex Machine also has one non-
arithmetical operation

A B C+× R→
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Aggressive Simplification
Fetchless architecture:

• Minimises circuitry

• Reduces on-chip fetch-latency to zero

Achieved by token passing
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Aggressive Simplification
• Tokens transmitted, conditionally on the sign of 

, through every edge of the square 
processor and internally

• Grey arrow blocked, white transmitted

A B C+× R→
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Aggressive Simplification

• There are four signs – negative, zero, positive, nullity – 
encoded in two sign bits so all selectors are maximally 
efficient

• If desired, each of the four separate signs can transmit 
a token in a different direction
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Aggressive Simplification

There are no arithmetical error states so:

• There is no error handling circuitry on a processor

• Code is more secure
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Processor Tile

• Processor tile is replicated everywhere in the interior of 
the chip

Result
token

Escalator step
N, S, E, W

Processor
in centre of
tile
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Escalator Bus

• Escalator bus emerges from the processor tiles
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Escalator Bus

• Every processor can simultaneously read from and 
write to the escalator bus on every processor clock 
cycle with zero latency
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Programming: an Army of Ants
• Single function “ants”

• No stored program

• Parameters are set up

• Function is invoked

• Result is propagated 
conditionally

• Programs are flow networks

• Both control and data flow 
through the network

• Flows can be modified at 
run time
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Programming: Initial Orders
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Programming: Is it Possible?
Yes, we have done it:

• Emulated a Turing complete machine

• Eliminated race conditions by using a single thread

• Eliminated race conditions by travel-time inequalities

• Implemented fully pipelined, mathematical functions 
with a throughput of one result per clock cycle, and a 
latency down to half that of the Itanium 2 on: 
reciprocal, reciprocal square root, square root, 
exponential
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Programming: Is it Possible?
• Pipelines do not break on branches, they just tee-off in 

some city-block direction within the 2D surface of a 
chip

• Non-recursive subroutines have call and return 
implemented by branching so when they are in-lined 
they do not break pipelines

• Multiple calling points for a single subroutine 
introduce bubbles in each pipeline, and may break the 
pipeline

• Loops force pipeline data into blocks of a size that will 
fit inside the loop, this breaks the pipeline
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Sum of Two Factorials
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Compilation
• Perspex architecture is Turing complete, but currently 

needs hand-coding or a restricted (domain specific) 
language

• Hand-coding with library calls is straightforward

• General compilation is straightforward, but uses a 
Perspex chip as a co-processor

• Compilation via single assignment (functional 
programming) is attractive because of pipelining

• Systolic programming is highly applicable

• Pipeline programming is highly applicable
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I/O

• Perspex chips can be tiled together with one escalator 
input and one escalator output per edge of the chip 
running at 150 M Tokens Per Second
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I/O

• Perspex chips have an address horizon, not an address 
space, so arbitrarily many Perspex chips can be tiled 
together

Perspex
chip

i/o chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

Perspex
chip

i/o chip

i/o chip

i/o chip i/o chip i/o chip

i/o chip

i/o chip

i/o chip

i/o chipi/o chipi/o chip
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com


James A.D.W. Anderson

Manchester 2008

Page 61 of 65
Part 3 – Conclusion
The current specification of the Perspex chip has:

• At least 4k processors

• Processors clocked at 500 MHz

• 4 input channels, each running at 150 M Tokens Per 
Second

• 4 output channels, each running at 150 M Tokens Per 
Second
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Part 3 – Conclusion
The software environment consists of:

• An FPGA implementation

• A functional simulator

• Loaders

• Assemblers

• A compiler
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Part 3 – Conclusion
• We have implemented conventional programs

• We have implemented pipelined programs

• We have implemented systolic programs

• We get better pipeline latencies than other architectures

• We get better pipeline throughput than other 
architectures

• We can sometimes match, but can never beat, systolic 
architectures

• It is not practical to implement programmable systolic 
arrays in ASIC, but Perspex is a viable alternative
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Part 3 – Conclusion
• Compiling by travel-time inequalities builds in some 

robustness to asynchronous operation of the array of 
processors

• Asynchronicity can be built in to the array to smooth 
power usage
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com


James A.D.W. Anderson

Manchester 2008

Page 65 of 65
Overall Conclusion
• The transreal numbers are the best candidate for the 

principal augmentation of the real numbers

• Transintegers remove the weird number from two’s 
complement arithmetic

• Transreal numbers have better semantics than IEEE 
floating-point numbers

• The 4D Perspex Machines are impractical, but they do 
give us some heuristics for designing machines that 
accept hardware errors

• The 2D Perspex Machines are practical, and can be 
implemented in the surface of a silicon chip
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