
© SPIE 2004. Home: http://www.bookofparagon.com

PERSPEX MACHINE II: VISUALISATION

COPYRIGHT
Copyright 2004 Society of Photo-Optical Instrumentation Engineers. This paper appears
in Vision Geometry XIII, Longin Jan Lateki, David M. Mount, Angela Y. Wu, Editors,
Proceedings of SPIE Vol. 5675, 100-111 (2004) and is made available as an electronic
copy with permission of SPIE. One print or electronic copy may be made for personal use
only. Systematic or multiple reproduction, distribution to multiple locations via electronic
or other means, duplication of any material in this paper for a fee or for commercial
purposes, or modifications of the content of the paper are prohibited.

http://www.bookofparagon.com

1

Perspex Machine II: Visualisation
James A.D.W. Anderson*

Computer Science, The University of Reading, England

Abstract

We review the perspex machine and improve it by reducing its halting conditions to one condition. We also introduce a
data structure, called the “access column,” that can accelerate a wide class of perspex programs. We show how the
perspex can be visualised as a tetrahedron, artificial neuron, computer program, and as a geometrical transformation. We
discuss the temporal properties of the perspex machine, dissolve the famous time travel paradox, and present a
hypothetical time machine. Finally, we discuss some mental properties and show how the perspex machine solves the
mind-body problem and, specifically, how it provides one physical explanation for the occurrence of paradigm shifts.

Keywords: perspex machine, artificial neurons, solid modelling, mind-body problem, paradigm shifts, time travel
paradox, time machine.

1. Introduction

The perspex machine has a very broad aim. It is intended to solve the mind-body problem and, in particular, to support
practical advances in computing, by showing how the perspex can be both a mind and a body. This ambition is set out in
the perspex thesis, which presupposes the materialistic thesis that everything that exists is physical: The perspex machine
can model all physical things, including mind, to arbitrary accuracy and, conversely, all physical things, including mind,
instantiate a perspex machine. In this paper we review the development of the perspex machine, make some technical
improvements to it, show how it can be visualised, and set out the basis for the bold claims in the perspex thesis. It is
intended that future papers will concentrate on technical aspects of the machine – as they affect computer science, AI,
philosophy, and physics – without restating the arguments for the thesis. However, at the time of this paper’s publication,
further discussion of the perspex thesis, and software modelling the perspex machine, will be available via the author’s
web sites*,8.

The perspex machine performs perspective transformations and was introduced in5 by unifying the Turing machine with
projective geometry. This was done by showing how four, specific, perspective transformations can carry out the four
operations of the Unlimited Register Machine (URM), and how these transformations can be laid out in space as the
program and registers of the URM. The URM is equivalent to a Turing machine so the perspex machine can carry out all
Turing operations. However, the perspex machine can be defined to operate in a continuous space, in which case it can
perform operations on general real numbers that are not accessible to a Turing machine. This establishes the theoretical
superiority of visualisation over symbolic modes of thought, and establishes vision geometry as the strongest basis for
mathematics. It follows that the continuous perspex machine cannot be fully described in words, which is why this paper
contains so many figures illustrating the machine’s operation, with an invitation, for the reader, to visualise its dynamics.

Whilst5 gave a clear description and examples of the operation of the perspex machine, the discussion of halting conditions
was unsatisfactory. We remedy this here by specifying that the machine halts only when it executes the nullity perspex, ,
as defined in this paper. In practical machines it is often convenient to store , as a constant, at or at the point
at nullity, , to provide a reliable source of halting instructions. The point at nullity was introduced in2 and
formalised in4, though this formalisation omitted a sign convention that is supplied here, in the section Erratum. The
number nullity, , lies off the real number line. Consequently a real numbered perspex machine that jumps to a
point with any co-ordinate nullity leaves Euclidean space, and also the perspective space in which projective geometry
takes place, whence it cannot return. Similarly, if a perspex machine jumps to any point with co-ordinate infinity, ,

H
H 0 0 0 0, , ,()

Φ Φ Φ Φ, , ,()

Φ 0 0⁄=

∞ 1 0⁄=

* J.A.D.W.Anderson@reading.ac.uk, http://www.reading.ac.uk/~sssander
Computer Science, The University of Reading, Reading, Berkshire, England, RG6 6AY.
© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

2

it cannot return to Euclidean space. In4 infinity was defined as the point at the positive extreme of the rational number line
and is extended here to the positive extreme of the real number line. In projective geometry, mappings within the plane at
infinity are permitted so it is reasonable to allow the perspex machine to operate within the plane at infinity and, by analogy,
to operate in the nullity subspaces, including the point at nullity. This is discussed in the section Perspex Instruction. The
transrational numbers, introduced in4, being the rational numbers, together with infinity and nullity, support total, rational,
trigonometric functions. These are useful for describing numerically exact rotations in a digital computer.

The perspex, or perspective simplex, can exist in various physical forms: as a matrix with column vectors , , ,
and ; as a 3D simplex, or tetrahedron, viewed in perspective; as a general linear and perspective transformation; as an
artificial neuron; and as a computer instruction. Many of these forms are illustrated in the section Visualisation, with the
remainder illustrated elsewhere in this paper. A data structure, called the “access column,” that can accelerate a wide class
of perspex programs is also presented in this section.

Taking the axis as the time axis leads to an interesting model of spacetime. In this model perspexes can instruct the
machine to read and write anywhere in spacetime, but perspexes in canonical form cannot instruct control to jump
backwards in time, though some un-normalised perspexes can. Thus, the perspex machine typically undergoes a forward
motion in time. In5 it was proposed that physical time naturally oscillates, corresponding to un-normalised perspexes, but
that random events ratchet time into a forward direction, corresponding to normalised perspexes. This gave rise to a
proposal to construct a time machine at a microscopic scale5. A simpler design is presented here in the section Time, along
with a resolution of the famous time travel paradox. Dissolving this paradox makes it easier to accept that time machines
might be physically possible.

In the section Paradigm Shifts it is shown that rational approximations to a continuous function generally oscillate in their
accuracy with increasing periods. In other words, rational approximations, and by implication, symbolic systems, such as
mathematics and the scientific literature, undergo paradigm shifts. Thus, one cause of the physically mental phenomenon
of paradigm shifts is explained by the physical properties of physical numbers affecting a physical machine.

The phenomenon of visual consciousness was defined in terms of mathematical mappings in1 and was generalised to a
perspex definition of consciousness and other mental properties in3. Further suggestions for perspex representations of
mental properties are given in the section Mental Properties.

2. Perspex Instruction

The perspex machine operates in a 4D space, called “perspex” or “program” space5, that contains perspexes at every
point. A perspex is a matrix with column vectors , , , and . The machine executes the perspex at a point as a
generic instruction, see also Eqn 5 in5:

; (Eqn 1)

This reads the perspexes at locations and , multiplies them together and writes the product, reduced to canonical form,
into the location . It then examines the top left element, , of the product and constructs a relative jump from the
current location using the components of . See Eqn 6 in5: if it jumps by along the x-axis, otherwise if
it jumps by along the y-axis, otherwise if it jumps by along the z-axis. In every case it jumps by along the

 axis. Thus, the machine starts at some point and control jumps from point to point until a halting condition is
encountered. We now define that the perspex machine halts only when it executes the halting instruction, , in (Eqn 3).

We generalise the perspex machine so that it operates on all real numbers, augmented with and . The generalisation
from rational numbers to real numbers is obtained by writing an irrational number as and carrying through the
syntactic analysis of transrational numbers in4. The set of real numbers, augmented with and , may then be called
“transreal” numbers by analogy with the transrational numbers.

4 4× x y z
t

t

4 4× x y z t

xy z→ jump z11 t,()

x y
z z11

t z11 0< t1 z11 0=
t2 z11 0> t3 t4

t
H

Φ ∞
n n 1⁄

Φ ∞
© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

3

We redefine the canonical form of a perspex , (Eqn 2) in5, to account for the strictly transreal numbers and :

(Eqn 2)

Hence, a perspex in canonical form has element . All jumps are relative so a machine in
Euclidean space stays in Euclidean space when it jumps by a real component, but if it jumps to infinity it cannot jump
back to Euclidean space because for all real and and . Similarly, if it jumps to nullity
it cannot jump back to Euclidean space or infinity because for all real, infinity, and nullity . As has been said,
projective geometry allows operations on points at infinity so operations at infinity are allowed in the perspex machine.
By also allowing operations at nullity we permit a thread of processing to perform housekeeping functions after operating
in Euclidean and perspective space and before halting.

We now redefine the universal halting perspex, , see (Eqn 4) in5, as:

(Eqn 3)

 is the default value of every point in perspex space so the machine will execute when it jumps to any uninstantiated
point. This leads to a convenient defensive programming policy. Setting all unwanted jump components to nullity forces
the machine to jump into a nullity subspace on a jump error and, if this subspace is uninstantiated, the machine
subsequently halts by executing . Conversely, using 0 as the “don’t care” value of a jump invites the bug where the
machine cycles infinitely by jumping a zero distance from a point to itself without limit.

Physically random events are, arguably, acausal, but acausal events in Euclidean and perspective space can be modelled
by reading or writing to a point with some co-ordinate nullity. Thus, a perspex can appear acausally in Euclidean and
perspective space by reading it from nullity, and the history of a perspex in real or perspective space can be saved
acausally by writing it to nullity. In other words, physically acausal events can be modelled in Euclidean and perspective
space by holding data and/or processing in the nullity subspaces. This modelling is, however, entirely causal within the
perspex machine. The perspex instruction (Eqn 1) is the only operation in the perspex machine so it is the machine’s
causality. Having such a simple causality simplifies discussion of the general irreversibility of time and of time travel
within the perspex machine.

3. Visualisation

The perspex can be visualised as an artificial neuron, see Figure 1. The perspexes are stored at locations and . The
large spheres, centred on and , denote the neurons’ bodies. The large disc indicates the boundary between one time
on the left and another time on the right. The perspex at , on the left, reads the perspexes at locations and into
its body. This is shown by the afferent dendrites, mottled cylinders, that run from the neuron’s body at to the synapses
at and . The synapses are shown as small spheres centred on and . By convention the nullity perspexes,

, at the synapses and elsewhere, are not shown. is the default value for a point in space and would obliterate the
image if it were drawn everywhere. In later figures the synapses are shown as hemisphere capped cylinders. The sphere
more distant from the neuron’s body is centred on the location of the synaptic perspex. The inner sphere is centred on the
axon one neuron body radius toward the body. This has the side effect that it appears as a, roughly, hemispherical synapse
on the surface of the synaptic neuron’s body, if this is drawn. Having read the perspexes and into its body, the
neuron then multiplies them together, reduces the result to canonical form, and writes the result to via the efferent
dendrite. The neuron then examines the top-left element of the resultant neuron/perspex and jumps, via a transferent
dendrite, to one of , , , or .

A Φ ∞

kA A with k≡
1 a44⁄ a44 0 Φ ∞, ,≠,

1 otherwise,⎩
⎨
⎧

=

kA a44 t4= 0 1 Φ ∞, , ,{ }∈

∞ a+ ∞= a ∞ ∞+ Φ= ∞ Φ+ Φ=
Φ a+ Φ= a

H

H

Φ Φ Φ Φ
Φ Φ Φ Φ
Φ Φ Φ Φ
Φ Φ Φ Φ

=

H H

H

L1 L2
L1 L2

L1 x 1() y 1()

L1
x 1() y 1() x 1() y 1()

H H

x 1() y 1()

z 1()

t1
1() t2

1() t3
1() t4

1()
© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

4

Figure 1: Perspex neuron over time.

Figure 1 was drawn in the ray-tracing package PovRay6 using hand written code. The later figures showing neurons were
generated by a back-end to a rational perspex machine implemented in Pop117, though the viewpoint, clipping, or lighting
have been adjusted by hand in some cases. All annotation is applied to the figures by hand. Every substantive piece of
code demonstrated here will be available via the author’s web sites8 by the time this paper is published.

Visualising perspexes as neurons makes it much easier to visualise the operation of a perspex program, rather than
viewing the program, say, as a list of perspex instructions set out in arbitrary order. It is important to recall, however, that
the perspex is a perspective transformation5 so it can be illustrated and analysed as a pencil of rays in projective geometry.
One is free to choose a physical instantiation of the perspex that best suits the task at hand.

Figure 2 shows a cube of a standard size and orientation described by perspex neurons. The description uses only the
afferent and efferent dendrites, not the transferent ones. Figure 3 shows the neurons in Figure 2 drawn as tetrahedra with
the neuron’s location and its x, y, and z vectors as vertices. Figure 4 shows an embryonic neural program that grows into
the program in Figure 5 when it is executed. Figure 6 shows a close up of the rotated cube in Figure 5. Figure 7 shows the
neurons in Figure 6 drawn as tetrahedra. It can be seen that the program in Figure 5 has rotated the standard cube by
comparing Figure 3 with Figure 7. The differences in size amongst the figures is due mainly to a difference in the view
point computed by the back-end program, though the view point has been slightly modified by hand in some cases.

Figures 2, 3, 6, and 7 are drawn in a 3D Euclidean space at an instant in time. Figures 4 and 5 are drawn as a contiguous
sequence of 3D Euclidean spaces each at successive integral times. Each co-ordinate, , in 3D space at an instant in time
is transformed as so as to map the infinite extent of Euclidean space onto a unit cube. The function
arctanq is a numerically exact, total, transrational version4 of the standard real function arctan. The unit cubes are laid out
contiguously on the x-axis and are rendered by PovRay. PovRay is a 3D ray tracer.

The program in Figure 4 is arranged as a fibre of neurons running from the top-left to the bottom-right. The first neuron is
a variable that holds the current transformation to be applied to a neural model of a standard cube. This variable is
initialised to identity. The second neuron is a numerically exact rotation that is used to increment the transformation held
in the first neuron. The next four neurons describe a standard cube. The next four neurons are a drawing program that
reads the standard cube and writes it into the hyperplane. The next neuron is the entry point to the fibre. It
increments the current transformation, in the first neuron, by the rotation, in the second neuron. It then passes control to
the first of four neurons that form a rotation program. The rotation program applies the current transformation, in the first
neuron, to the drawing program and writes the result into the growth site. The last neuron in the rotation program passes
control to the first neuron in the newly grown drawing program, shown in Figure 5. This drawing program reads the
standard cube, applies the current transformation to it, and writes the result as the rotated cube. Thus, the rotation of the
cube is obtained by rotating a drawing program and the data it is applied to, not by rotating the cube data alone. The dead
code in Figure 5 is not drawn, as if it had been explicitly killed by writing into each unwanted location.

L1

L2

x 1()

y 1()

z 1()

t1
1()t2

1()

t3
1()

t4
1()

c
c arctanq c()() 2⁄→

t 1=

H

© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

5

Figure 2: Perspexes as neurons describing a standard cube.

Figure 4: Perspexes as neurons being a self modifying program.

Figure 6: Perspexes as neurons being the rotated cube.

Growth site

Rotation
program

Drawing
program

Current

Standard
cube

Rotation
increment

Entry point –
applies increment
to transformation

Control jumps forward
in time

transformation
© SPIE 2004. Home: http:/
Figure 3: Perspexes as tetrahedra describing the standard cube.

Figure 5: Perspexes as neurons being the modified program.

Figure 7: Perspexes as tetrahedra being the rotated cube.

Grown drawing
program

Standard cube

Rotated
cube

Dead code

Current
transformation
/www.bookofparagon.com

http://www.bookofparagon.com

6

It might seem perverse to implement a drawing program that applies a transformation both to itself and to the data it is
applied to. This was done for both a theoretical and a practical reason. It demonstrates the theoretical point that perspex
programs are objects like neurons, tetrahedra, or transformations. It makes sense to apply geometrical transformations to
each type of object, though the effect is generally homomorphic, not isomorphic, amongst the different instantiations of
the perspex. The practical advantage of writing a self-modifying program in this way is its conciseness. There are just 15
neurons shown in Figure 4 and another 5 that act as a bootstrap program to move control from the entry point of perspex
space at to the entry point of the program at . These five neurons demonstrate an “operating
system” task of moving control from one program to another.

A program made up of matrices stored at locations can be written as a collection of matrices using the
following encoding:

(Eqn 4)

Thus, the perspexes shown in Figure 4 are, in order along the fibre, that is, from top-left to bottom-right of the figure:

, , , , , , ,

, , , , , , ,

And the bootstrap program, which accesses the program root and spine, described below, is entered at :

, , , ,

A perspex machine may be entered at any point, or any number of points, including all of the points in a segment of the
real number line, so the choice to enter the bootstrap program at is arbitrary. This starting point arises from a
particular implementation of a perspex machine that is laid out as follows. is stored at . This point is known
as the “program seed” and is declared read only in the implementation. The identity perspex is stored at ,

, and . These locations are called the “program root” and are declared read only. The program root is
useful for implementing primitive bootstrap programs, say, by using the identity perspex machine described in5, or the
slightly more sophisticated bootstrap program above. Built-in structures are assigned to the fibre with integer

. This fibre is called the “program spine.” The built-in structures handle file input and output, and numerical tasks
that would be too tedious to carry out with explicit perspexes, such as the construction and destruction of transrational
numbers, respectively, from and to integers. The program spine also contains constant perspexes, such as the zero perspex
at , and an access column. The perspex machine is entered by the host operating system transferring control to
the first perspex, , in the spine. No other part of the perspex machine accesses peripheral devices, though
executing passes control back to the host operating system unless this exit is trapped and is used to re-start the perspex
machine5.

1 1 1 0, , ,{ } 0 0 0 12, , ,{ }

4 4× 4 1× 4 5×

x1 y1 z1 t1

x2 y2 z2 t2

x3 y3 z3 t3

x4 y4 zx t4

l1

l2

l3

l4

→ is encoded as

x1 y1 z1 t1 l1

x2 y2 z2 t2 l2

x3 y3 z3 t3 l3

x4 y4 zx t4 l4

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 2

cosq 1 2⁄() sinq 1 2⁄() 0 0 0
-sinq 1 2⁄() cosq 1 2⁄() 0 0 0

0 0 1 0 0
0 0 0 1 3

1– 1 1 0 0
1– 1 1– 0 0
1– 1– 1 0 0
1 1 1 0 4

1 1– 1– 0 0
1 1– 1 0 0
1– 1– 1 0 0
1 1 1 0 5

1– 1 1 0 0
1 1– 1 0 0
1 1 1– 0 0
1 1 1 0 6

1 1– 1– 0 0
1– 1 1– 0 0
1 1 1– 0 0
1 1 1 0 7

0 0 1 0 0
0 0 1– 0 0
0 0 1– 0 0
2 4 1 1 8

0 0 1– 0 0
0 0 1 0 0
0 0 1– 0 0
2 5 1 1 9

0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
2 6 1 1 10

0 0 1– 0 0
0 0 1– 0 0
0 0 1 0 0
2 7 1 1 11

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
3 2 2 1 12

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 8 17 1 13

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 9 18 1 14

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 10 19 1 15

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 11 20 1 16

1 1 1 0, , ,()

1– 0 0 0 3
0 1– 0 0 0
0 0 1– 0 0
0 0 0 1 0

1 0 2 0 1
0 1 0 0 1
0 0 0 1 1
0 0 0 0 0

1 3 2 1– 1
0 0 0 0 1
0 0 0 0 2
0 0 0 0 0

3 3 2 0 0
3 3 0 1– 1
3 3 0 0 2
0 0 0 0 0

1 0 2 0 0
0 1 0 0 0
0 0 0 2– 2
0 0 0 12 0

1 1 1 0, , ,()
H 0 0 0 0, , ,()

1 0 0 0, , ,()
0 1 0 0, , ,() 0 0 1 0, , ,()

k k k 0, , ,()
k Z+∈

3 3 3 0, , ,()
1 1 1 0, , ,()

H

© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

7

The proof5 unifying projective geometry with the perspex machine relied on operations that change only one element of a
homogeneous matrix. Thus, a perspex machine can simulate matrix algebra by using one perspex for every element of a
matrix. This is wasteful. It is more efficient to provide a built-in structure that allows the arbitrary accessing of elements
within a single perspex so that one perspex can represent up to a partition of a matrix. This is what the access
column provides. The access column has perspexes laid out consecutively along the program spine. The
first perspex is at a location known as the 0th location and the last perspex is at a location known as the 65,535th location,
though the actual locations at which the perspexes are stored in the spine is arbitrary. A sixteen-bit binary number, with
bits from the 0th bit to the 15th bit, then encodes both a location within the access column and within the perspex matrix:

(Eqn 5)

The access column is used by writing and reading perspexes into and from it. When a perspex p is written into the n’th
location, the location number n is examined. If the k’th bit of n is clear then the element from the k’th mask position (Eqn
5) is read from p into the same position in the 0th perspex, otherwise, if the k’th bit of n is set, the element from the k’th
mask position is read from p into the same position in the 65,535th perspex. On a read from the n’th perspex the direction
of copying is reversed, so that elements are copied from the 0th and the 65,535th perspex into the n’th perspex as the k’th
bit of n is, respectively, clear or set. Thus, perspexes can be constructed that contain any combination of the elements from
the 0th and the 65,535th perspexes. This provides a very efficient way to access partitions of a perspex. It allows many
perspex programs to be accelerated by folding several computations into one.

The access column is of great practical utility, but there does not seem to be any simple way to implement it as a sequence
of perspective transformations. Hence, a perspex machine with an access column, or for that matter with read or write
only locations, or built-in structures, is cumbersome to analyse using only projective geometry. But this is just to say that
access columns, read/write policies, and built-in structures are useful because they perform theoretically cumbersome
tasks in a simple way.

This completes the current specification of the perspex machine and describes one particular implementation of a serial
perspex machine that contains a program seed, root, and spine. We now consider more abstract properties of the machine.

4. Time

The well known time travel paradox involves a time traveller travelling back in time and killing his grandfather, thereby
preventing the time traveller from being born. This paradox is meant to show that time travel is impossible. But, like all
logical paradoxes, it relies on a deterministic universe. It is arguable whether quantum events in our universe are
deterministically pseudo random or genuinely random. If they are genuinely random they dissolve the time travel
paradox, removing this philosophical objection to time travel. It then becomes a matter of considerable scientific interest
to discover whether quantum events are genuinely random. One way to try to discover this is to attempt to construct a time
machine that exploits genuine randomness in a universe that is hypothesised to contain particles that move arbitrarily in
time. Such a machine was proposed in5 and a simpler machine is proposed below.

It is rather difficult to analyse a paradox that includes terms so complex as a homicidal man and biological reproduction.
It is much simpler to consider the transmission of a single bit of information backwards in time, inside a computer, and to
measure the consequences of this in terms of a programmed outcome.

Suppose that there is a room with a light in it that is switched on and off by a computer, that the computer is equipped with
a light meter, and that the computer has a circuit in it that can send one bit of information backwards in time by sending a
single photon backwards in time. Suppose, further, that the computer is programmed to establish a temporal paradox as
shown in Figure 8.

4 4×
216 65 536,=

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

8

Figure 8: Time travel paradox.

The experiment starts at state 1a where the computer switches the light on or off. Suppose it switches the light on. The
universe, comprising the room, light, light meter, and computer, is in state 2a. The light in the room is measured at 3a. If
the measurement indicates that the light is on then the universe is in state 4a. At 5a a signal is sent back in time instructing
the computer at 1b to turn the light off. If the computer switches the light off then the universe is in state 2b. The light in
the room is measured at 3b. If the measurement indicates that the light is off then the universe is in state 4b. At 5b a signal
is sent back in time instructing the computer at 1a to turn the light on. This establishes the paradoxical time loop (1a-2a-
3a-4a-5a-1b-2b-3b-4b-5b) which cycles without limit. Alternatively, if the experiment starts with the light switched off
then there is a phase shift in the loop to (1b-2b-3b-4b-5b-1a-2a-3a-4a-5a) One can suppose that the single time
travelling photon, carrying one bit of information, is in the superposition of states 1a-2a-3a-4a-5a and 1b-2b-3b-4b-5b. In
a deterministic universe the photon stays in superposition and cannot escape the region of spacetime between 1ab and
5ab. In a quantum universe the superposition of states is unmeasurable so the time travel paradox establishes that no
measurable consequence arises from this kind of time travel, in other words, time travel is impossible, in practical terms,
as expected from the time travel paradox. But suppose that the universe is non-deterministic, then the superposition of
paradoxical states can collapse in several ways. For example, at 1a the computer switches the light on, then the universe is
in state 2a. The light is measured at 3a and found to be on at 4a. The computer then transmits a signal from 5a to turn the
light off at 1b, but a random signalling error causes it, as before, to enter state 1a where it instructs the light to be switched
on, as before, at 2a. The light is measured, as before, at 3a, and found to be on, as before, at 4a. The signal to switch the
light off is transmitted, as before, at 5a. The part of the computer that is not the time travelling photon measures the light
level at 6a and, we suppose, the light is measured to be on at 7a. Thus there is no paradox and no superposition of states.
So far as measurable spacetime is concerned the history of the universe is 1a-2a-3a-4a-5a-6a-7a. A similar argument can
bring about the history 1b-2b-3b-4b-5b-6b-7b. Thus, the time travel paradox is resolved if a suitable random event takes
place, but a suitable random event does take place in a time loop with a probability tending to one, because5, if an event is
genuinely random it is unaffected by earlier or later outcomes, which is to say that it is acausal and occurs at an instant of
time. Hence, on every cycle of a paradoxical time loop a random event gets a chance to occur and, as the loop cycles
indefinitely often, the probability of some random event collapsing the superposition of states tends to one. Thus, the time
travel paradox hardly ever holds in a non-deterministic universe and cannot be a general prohibition against time travel.

It only remains to claim that time travel in the macro universe of homicidal men results from time travel at the quantum
level. One can then construct an argument that some random accident prevented the “time traveller” from being born, or

1ab

2a

2b

3ab

4a

4b

5a

5b

6ab

7a

7b

computer
switches
light

light
switched
on

light
switched
off

light
measured

light
measured
on

light
measured
off

light
measured
on

light
measured
off

light
measured

? ? ?

switch light off instruction sent back in time

switch light on instruction sent back in time

…
…

© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

9

else the time traveller was born, but suffered a random accident preventing him from bringing about his own death. Thus,
the time travel paradox is dissolved, as anticipated in5.

Figure 9: Time machine.

The figure above shows a very simple time machine involving nothing more than: a pulsed light source at a; a beam
splitter with a glass body that has a half-silvered surface at o and an unsilvered surface at e and f; and a detector at d. In
forward time light is emitted at a and passes straight through the beam splitter to c or else is reflected at o and travels to b.
Suppose that light passing from o to e, in forward time, is retarded by a phase and a ray of light reflected at o from a to
b, in forward time, is phase shifted by , depending on the polarising properties of the surface of the mirror. If time were
to reverse in a deterministic universe then photons at b and c would exactly retrace their paths to a, but in a non-
deterministic universe some of the photons at b will pass through the beam splitter to d, and some of the photons at c will
reflect at o and go to d. Thus, in a deterministic universe there are no photons at d, but in a non-deterministic universe
there are photons at d that have undergone a systematic phase shift of , relative to the phase along the ray in the
vacuum, as calculated next.

a
o

e

b

c

d

f

half-silvered surface

glass

detector

pulsed
light
source

unsilvered surface

φ1
φ2

φ– 1 φ2±

Step Effect Phase
Difference

ao

oo reflection in forward time

ob

bb time reversal

bo

of retardation in backward time

fd

Nett Effect

φ2

φ– 1

φ– 1 φ2+

Step Effect Phase
Difference

ao

oe retardation in forward time

ec

cc time reversal

ce

eo retardation in backward time

oo reflection in backward time

of retardation in backward time

fd

Nett Effect

φ1

φ– 1

φ– 2

φ– 1

φ– 1 φ2–
© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

10
5. Paradigm Shifts

If a perspex machine, or a Turing computable subset of it, produces a rational approximation to a continuous function at
increasing precisions then it will, in general, produce a close approximation that is followed by increasing numbers of less
close approximations. In other words, the accuracy of approximation goes through a shift where a less precise
approximation is more accurate than many subsequent, more precise, approximations. This numerical property is
analogous to the case in science where a radical theory is produced in a paradigm shift, is made more precise during a
period of conventional science, but without radically increasing its accuracy, until a radically more accurate theory is
produced in a paradigm shift. The numerical shifts in the tightness of a bound are called “paradigm shifts” here because
they are likely to cause scientific paradigm shifts in any machine sophisticated enough to develop symbolic theories that
describe a continuous property of the universe, or a property at a discrete resolution finer than its theoretical symbols. For
example, suppose the word “mass” is physical symbols in a perspex machine and is related to objects in the universe by
the way the machine moves. The word “mass” might initially mean a volume, but come to be specified by weight as the
machine produces a more accurate measure of the effort needed to move a “mass” of things of varying density. As further
accuracy is obtained the word “mass” might come to mean inertial mass, as the machine experiences the varying weight of
things under different gravitational conditions. Whatever quantities the machine uses they will go through numerical
paradigm shifts, any of which might cause a scientific paradigm shift in the perspex machine’s symbolic processing.

Without loss of generality, consider the bounded segment of the real number line . This is shown in Figure 10 as the
circumference of a circle drawn clockwise from 0 to 1. (As rational bounds on this segment are symmetrical about
the circular figure has the advantage of illustrating the symmetry.)

Figure 10: Successive rational bounds – walnut cake.

Suppose that measurements are made by making a cut from the centre of the circle to the circumference. In the first
generation 2 cuts are made, dividing the circle into 2 equal parts of size a. In the second generation 3 cuts are made,
dividing the circle into 3 equal parts of size b, in addition to some parts surviving from earlier cuts. There are just 4 sectors
in the circle b, not , because of the common cuts at the position . In the third generation 4 cuts
are made, but there are just 6 sectors, not , because of the additional common cuts at and

. This process continues without limit. At each stage the potential number of cuts is given by the arithmetic
sequence , but all of the repeated cuts are removed from the sequence.

Developing a formula for all repeated cuts would be equivalent to developing a formula for the prime numbers. A more
tractable approach is to find polynomial bounds on the sequence, which we do next in a simple presentation of a more
general theorem we call the “walnut cake theorem.” We examine the case of measurements that lie in a sector bounded
both above and below by cuts. The number of cuts on the line segment grows arithmetically, so there are order
cuts up to precision . It follows that adding cuts in the next term of the sequence is not sufficient to subdivide all of
the sectors so, in general, a measurement at precision will not be improved until many new cuts have been made. That
is, a measurement remains the most tightly bounded for many terms before going through a paradigm shift. We now seek
a sharp bound on when this paradigm shift occurs for new measurements taken at a single precision.

Lemma 1: Upper bound. If all segments at precisions have been constructed, then measurements at the single
precision are more than sufficient to subdivide each segment, tightening the bounds everywhere.

0 1,[]
1 2⁄

a b c d

1,0 1,0 1,0 1,0

2 3+ 5= 2 2⁄ 3 3⁄ 1= =
2 3 4+ + 9= 4 4⁄ 1=

2 4⁄ 1 2⁄=
2 3 4 … n, , , ,

0 1,[] On2

n n 1+
n

2 3 … n, , ,
n2
© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

11
Proof 1: The smallest constructed sector is of size:

Therefore, segmenting at the single precision is more than enough to subdivide every sector constructed up to
precision . In other words, given measurements up to precision , a paradigm shift occurs before a measurement at
precision .

Lemma 2: Lower bound. If all segments at precisions have been constructed then measurements at a single
precision of order are not sufficient to subdivide each segment, i.e., they do not tighten the bounds everywhere.

Proof 2: Consider the sequence:

 where

All cuts at precisions are duplicated by cuts at double this precision . And
there is at least one cut at that is not duplicated. Hence, by the sum of the arithmetic sequence, there are more than:

 cuts.

Therefore a lower bound is of order .

Both the upper and lower bound are of order so we accept , as given by Lemma 1, as a sharp upper-bound on the
single precision that will tighten the bounds on any and all measurements at precisions .

The above proof deals with Turing computable functions that are bounded both above and below. It can be relaxed to
partial sequences of measurements, and is readily extended to give the probability of a paradigm shift in Turing semi-
computable functions that are bounded only above or else below. In every case the result holds.

6. Mental Properties

The perspex thesis is a materialistic thesis in which all mental properties are hypothesised to be physical. The
phenomenon of consciousness was set out in terms of perspexes in3, based on an earlier, more abstract, definition1. The
definitions, below, set out a pan-psychic model of mind grounded in perspexes. In most cases these are a clarification of
earlier definitions, but the definition of intelligence is new. It is hypothesised that all forms of intelligence involve
establishing a symmetry between a knowledge representation in a machine and objects that may be in the world. In the
definition of intelligence, establishes a symmetry and allows a perceptual function , in the
machine, to relate an internal knowledge representation, , to a, possibly, external object . Further, it is hypothesised
that symmetry in knowledge representations manifests as efficient processing and economy of explanation, the hallmarks
of intelligence. It is further hypothesised that morality involves the symmetry of dealing “fairly,” i.e. symmetrically, so
that, as defined, morality is identical to intelligence.

action ; .
afferent The afferent vectors are and . The afferent perspexes are and . They are called afferent by analogy with

an afferent nerve that brings information in from the body to the brain. Compare with efferent and transferent.
agent All of the wills in a body that set the body into motion.
body A collection of perspexes.
causality See action.
consciousness A partial, bi-directional mapping between perspexes.

1 n 1–()⁄ 1 n⁄– 1 n2 n–()⁄=

1 n2⁄
n n
n2

2 3 … n, , ,
O n2 8⁄()

a1 2 a2, 3 … ak, , k 1 … an 1–, ,+ n= = = =

ak
n 2⁄ n even,

n 1–() 2⁄ n odd,⎩
⎨
⎧

=

ai a1 a2 … ak, , ,= 2ai ak 1+ ak 2+ … an 1–, , ,=
1 n⁄

ai

i 2=

k

∑
n2 4–() 8⁄ n even,

n2 2n– 3–() 8⁄ n odd,⎩
⎨
⎧

=

O n2 8⁄()

On2 n2

2 3 … n, , ,

On2

f a() a= g f a()() g a()= g
f a() a

xy z→ jump z11 t,()
x y x y
© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

12
efferent The efferent vector is . The efferent perspex is . They are called efferent by analogy with an efferent nerve that
takes information outward from the brain to the body. Compare with afferent and transferent.

feeling Consciousness caused by a collection of afferences.
intelligence where is a collection of perspexes; and , , and “=” are functions implemented in

perspexes.
mind A collection of actions.
morality See intelligence.
motion .
selection .
transferent Relating to any, or all four, control paths used by that transfer control from one perspex to

another. Compare with afferent and efferent.
will Conscious selection of action.
will, free An agent’s will is free if it is not willed by another agent.

7. Conclusion

The perspex machine is a super-Turing machine that arose from the unification of the Turing machine and projective
geometry. It is a continuous machine so, we suppose, it can model all physical things, including minds, to arbitrary
accuracy. If so, this establishes an isomorphism between the perspex machine and all physical things so it is correct to say
that the physical universe instantiates a perspex machine. This thesis, in itself, solves the mind-body problem by holding
that the perspex machine is a physical thing that is also a mind. Furthermore, we have begun a more detailed account of
how the machine describes minds and bodies. We have shown how the machine can model physical things, such as bodies
composed of tetrahedra moving through space and time, without time travel paradoxes. We have shown how theories,
expressed in any physical format, are limited by the physically numerical properties of space so that they undergo
paradigm shifts when describing properties at a finer resolution than themselves. We claim to have identified a physical
basis for intelligence and morality (fair dealing). Future work will concentrate on technical aspect of the perspex machine.

8. Erratum

The sign convention in equation 18 of paper4 is not explicit. The convention is in two parts. Firstly, the integer square root
is signed. That is, the positive or negative root is chosen so that . Secondly, the radius is non-
negative. Consequently the sign of the denominators and of and is chosen so that and

.

References

1 J.A.D.W. Anderson “Visual Conviction” Proceedings of the Fifth Alvey Vision Conference pp. 301-303 (Sept. 1989).
2 J.A.D.W. Anderson “Representing Geometrical Knowledge” Phil. Trans. Roy. Soc. Lond. series B, vol. 352, no. 1358,

pp. 1129-1139, Aug. 1997.
3 J.A.D.W. Anderson “Robot Free Will” ECAI 2002 Proceedings of the 15th European Conference on Artificial

Intelligence Lyon, France, ed. F. van Harmelan, pp. 559-563, 2002.
4 J.A.D.W. Anderson, “Exact Numerical Computation of the Rational General Linear Transformations” in Vision

Geometry XI Longin Jan Latecki, David M. Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 4794, 22-28
(2002). (See the erratum in the current paper.)

5 J.A.D.W. Anderson, “Perspex Machine” in Vision Geometry XI Longin Jan Latecki, David M. Mount, Angela Y. Wu,
Editors, Proceedings of the SPIE Vol. 4794, 10-21 (2002).

6 PovRay is a publicly available ray-tracing package. See http://www.povray.org
7 Pop11 is a publicly available AI language. See http://www.poplog.org
8 The author’s web sites are http://www.reading.ac.uk/~sssander and http://www.bookofparagon.btinternet.co.uk

z z

g f a()() g a()= a f g

xy z→
jump z11 t,()

jump z11 t,()

x sgn x() sgn x()= r
p q r p⁄ r q⁄ sgn p() sgn r p⁄()=

sgn q() sgn r q⁄()=
© SPIE 2004. Home: http://www.bookofparagon.com

http://www.bookofparagon.com
http://www.bookofparagon.com/Robots/ECAI.2002.pdf
http://www.bookofparagon.com/Mathematics/SPIE.2002.Exact.pdf
http://www.bookofparagon.com/Mathematics/SPIE.2002.Perspex.pdf
http://www.povray.org
http://www.poplog.org
http://www.reading.ac.uk/~sssander
http://www.bookofparagon.btinternet.co.uk

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

