PERSPEX MACHINE VII: THE UNIVERSAL PERSPEX MACHINE

COPYRIGHT

Copyright 2005 Society of Photo-Optical Instrumentation Engineers. This paper will be
published in Vision Geometry XIV, Longin Jan Lateki, David M. Mount, Angela Y. Wu,
Editors, Proceedings of SPIE Vol. 6066 (2006) and is made available as an electronic copy
with permission of SPIE. One print or electronic copy may be made for personal use only.
Systematic or multiple reproduction, distribution to multiple locations via electronic or
other means, duplication of any material in this paper for a fee or for commercial
purposes, or modifications of the content of the paper are prohibited.

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

Perspex Machine VII: The Universal Perspex Machine

James A.D.W. Anderson”
Computer Science, The University of Reading, England

Abstract

The perspex machine arose from the unification of projective geometry with the Turing machine. It uses a total arithmetic,
called transreal arithmetic, that contains real arithmetic and allows division by zero. Transreal arithmetic is redefined
here. The new arithmetic has both a positive and a negative infinity which lie at the extremes of the number line, and a
number nullity that lies off the number line. We prove that nullity, 0/0, is a number. Hence a number may have one of four
signs: negative, zero, positive, or nullity. It is, therefore, impossible to encode the sign of a number in one bit, as floating-
point arithmetic attempts to do, resulting in the difficulty of having both positive and negative zeros and NaNs.
Transrational arithmetic is consistent with Cantor arithmetic. In an extension to real arithmetic, the product of zero, an
infinity, or nullity with its reciprocal is nullity, not unity. This avoids the usual contradictions that follow from allowing
division by zero. Transreal arithmetic has a fixed algebraic structure and does not admit options as IEEE, floating-point
arithmetic does. Most significantly, nullity has a simple semantics that is related to zero. Zero means “no value” and
nullity means “no information.” We argue that nullity is as useful to a manufactured computer as zero is to a human
computer.

The perspex machine is intended to offer one solution to the mind-body problem by showing how the computable aspects
of mind and, perhaps, the whole of mind relates to the geometrical aspects of body and, perhaps, the whole of body. We
review some of Turing’s writings and show that he held the view that his machine has spatial properties. In particular, that
it has the property of being a 7D lattice of compact spaces. Thus, we read Turing as believing that his machine relates
computation to geometrical bodies.

We simplify the perspex machine by substituting an augmented Euclidean geometry for projective geometry. This leads to
a general-linear perspex-machine which is very much easier to program than the original perspex-machine. We then show
how to map the whole of perspex space into a unit cube. This allows us to construct a fractal of perspex machines with the
cardinality of a real-numbered line or space. This fractal is the universal perspex machine. It can solve, in unit time, the
halting problem for itself and for all perspex machines instantiated in real-numbered space, including all Turing machines.
We cite an experiment that has been proposed to test the physical reality of the perspex machine’s model of time, but we
make no claim that the physical universe works this way or that it has the cardinality of the perspex machine. We leave it
that the perspex machine provides an upper bound on the computational properties of physical things, including
manufactured computers and biological organisms, that have a cardinality no greater than the real-number line.

Keywords: transreal arithmetic, universal perspex machine, universal Turing machine, mind-body problem.

1 Introduction

The perspex machine®'315 arose from the unification® of projective geometry with the Turing machine. The

unification was carried out, in effect, by identifying the parts of a Turing machine with geometrical objects, and the
operations of the Turing machine with geometrical transformations. Only integer co-ordinates were used to model the
Turing machine, but the use of homogeneous co-ordinates in the projective geometry raises the question of how to deal
with division by zero in an arbitrary transformation. Division by zero is allowed in transrational arithmetic* and in its
generalisation to transreal® arithmetic. These arithmetics are redefined here in a way that both extends and simplifies the
them. Transrational arithmetic now has three strictly transreal fractions: positive infinity, ©«=k/0=1/0, negative infinity,
—w=-k/0=-1/0, with £ a non-zero integer; and nullity, ®=0/0. These fractions are numbers for the historically
acceptable reason that they arise as solutions to an equation.4 For example, in a right triangle with unit hypotenuse we
have tan(n/2)=1/0=o0. Dilatating the triangle by a positive factor k¥ we have tan(n/2)=k/0=1/0. Similarly,

* J.LA.D.W.Anderson@reading.ac.uk, http://www.reading.ac.uk/~sssander, http://www.bookofparagon.com
Computer Science, The University of Reading, Reading, Berkshire, England, RG6 6AY.

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

tan(3n/2)=-k/0=-1/0=-w. Dilatating by a zero factor k¥ we have tan(n/2)=k/0=0/0=®. It is astonishing that
nullity has formerly been regarded as an undefined object, rather than being a number, when it arises as the solution to
such a well known equation describing the ratio of two sides of a triangle. In this respect, the IEEE standard'> which calls
0/0 NaN (Not a Number) is badly motivated, because NaN is evidently a number. That standard also allows a range of
options for dealing with infinities and NaN which is not appropriate to the development of a fixed algebraic structure like
the transarithmetics. In Section 2 we give a derivation of transrational arithmetic which both extends and simplifies the
carlier arithmetics.*® In particular, the new arithmetic is consistent with Cantor arithmetic'® and leads to a very simple
semantics for nullity that is related to zero. Zero means “no value” and nullity means “no information.”

In Section 3 we review some of Turing’s Writings”’l()’20 and show that he held the view that his machine has spatial

properties. In particular, that it is a 7D lattice of compact spaces. In other words, we argue that Turing believed his
machine relates computation to geometrical bodies and is not purely an abstract machine as some commentators claim.

This view is put more strongly in our perspex thesis which claims that the relationship between mind and body can be
understood in terms of a perspex machine:

The perspex machine can simulate all physical things, including mind, to arbitrary precision and,
conversely, all physical things, including mind, instantiate a perspex machine.

The perspex machine can be understood as the structure and operation of a 4D program-space of 4 x 4 matrices, or
perspexes.5 Mathematically, the perspex is simultaneously: a shape (simplex), collections of which can tessellate all
geometrical bodies that occur in its space; a point-wise, general-linear motion, collections of which can compose all
motions in its space; a computer instruction, collections of which can execute all Turing computable programs and all
Turing incomputable programs with cardinality no greater than the real number line; and the perspex is an artificial neuron
which can do all of the preceding things. By hypothesis, all of the operations of a concrete perspex-machine are physical
operations on physical things which may refer simultaneously to abstract mathematical objects and to physical objects. On
the materialistic assumption, everything that exists, including mind, is physical so, by hypothesis, the perspex machine
has the power to simulate a mind arbitrarily closely. Thus, the perspex thesis offers a solution to the mind-body problem
by being a physical thing that implements an abstract, mathematical machine that simulates the operations of any mind
arbitrarily closely. Furthermore, if a perspex machine has a mind of its own, it is necessarily true that it physically carries
out the operations of its own mind exactly.

The perspex thesis is not simply a linking hypothesis that justifies discussion of mind as a physical process.14 It provides
a simple model of the relationship that allows mathematical models of mental phenomena to be constructed>* and, we
suppose, to be put to empirical, instrumental tests. It also offers a solution to the other-minds problem. Perspex spaces can
be transformed smoothly one into another’ so, in principal, any mind and body can be transformed smoothly into another.
For example, John Smith at time zero, S, and Jane Doe at time zero, D), may be blended into one person, P,, at time ¢,
as P, = M,+(1-1)S,+ D, for real ¢ increasing from 0 to 1. We suppose that the additional memory, M,, allows the
blended person, P,, to remember some, if not all, of the transition. Recall of this memory may be delayed until > 1 so
that the blended person is not changed by the additional memory during the transition. If the two end points of the
transition are remembered then P, knows what it is like to be the actual bodies and minds S, and D,, and, therefore, has
the experience to settle the other-minds problem for these two individuals. More weakly, if any two instants of the
transition are remembered then P, knows what it is like to be some other minds and bodies and, therefore, has the
experience that other minds and bodies exist. It remains an open question whether P, has the cognitive ability to
understand the other-minds problem and declare a solution to it. If John Smith is a cat and Jane Doe is a goldfish it is
unlikely that any P, can voice an opinion on the other minds problem, though the intermediate animal might be tested to
see if it has cat-like and/or goldfish like abilities. Only in the case that there is no recall of the transition does the blending
fail to yield any information about other minds. Whilst it is not feasible to blend biological organisms, it is practical to
blend robots. If we have a pool of robots that have adapted to the world in some way then we may produce blends of them
and put their fitness to the test. This provides an alternative to genetic algorithms.

The perspex machine can also be understood as a 20D space composed of a 4D program-space and 4x4 = 16
dimensions corresponding to a perspex. However, this space is not static. The model of time within the perspex machine”
allows control to visit different parts of the 4D spacetime before it collapses into a solution.® In this respect the perspex
machine has some commonality with modern theories of physics, along with their conundrums for causality.

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

Whilst we may adopt a pragmatic solution to the problems of causality in any particular perspex machine, it is important
that the abstract perspex-machine has sufficient flexibility to adopt whatever causality our physical universe has. Indeed,
one would want to modify the abstract perspex-machine so that it operates in a way that is identical to the physical
universe. This may involve introducing a variety of computational objects. The current adoption of the perspex, as a
monad, is a philosophical and theoretical simplification, not a claim to having specified a universal, physical entity.

In Section 4 we simplify the perspex machine by substituting an augmented Euclidean geometry for projective geometry.
This leads to a general-linear perspex-machine which is very much easier to program than the original perspex-machine.
We then show how to map the whole of perspex space into a unit cube. This allows us to construct a fractal of perspex
machines with the cardinality of a real-numbered line and space. This fractal is the universal perspex machine. It can
solve, in unit time, the halting problem for itself and for all perspex machines instantiated in real-numbered space,
including all Turing machines. It can implement Turing’s choice'’ and oracle machines.!” We also cite a proposed
experiment6 to test the physical reality of the perspex machine’s model of time, but we make no claim that the physical
universe has the properties of the perspex machine. We leave it that the perspex machine provides an upper bound on the
computational properties of any physical things, including manufactured computers and biological organisms, that have a
cardinality no greater than the real-number line. This view is consistent with some other views of the physical
(un)realisability of super-Turing computers.”!

2 Transrational Arithmetic

In order to derive transrational arithmetic we make three changes to a standard, constructive derivation® of rational
arithmetic, though we also accommodate the consequences of these changes. Firstly, we define the canonical form of
transrational numbers so that the denominator is non-negative, rather than positive. Secondly, we add a clause to the
greater-than and less-than operators so that they can compare a positive and a negative infinity. Thirdly, we add a clause to
the addition operator to handle the addition of infinities in a way that is consistent with Cantor arithmetic. All of the other
definitions and operations adopted here occur as standard formulae in some derivation of the rational numbers, but this is
not to say that all treatments of the rational numbers carry over to transrational numbers. Allowing division by zero
introduce some freedom into the development of arithmetics that contain rational arithmetic as a sub-arithmetic. Hence,
different selections of definitions that are equivalent in the rational case may lead to different super-arithmetics. The
arithmetic developed here is designed to be particularly suited to Euclidean geometries.

Firstly, we adopt the standard sign function for use in the development of transrational arithmetic; but, for completeness,
we extend it to return a numerical value denoting the sign of nullity. Note that sign takes on four values which can be
encoded exactly in two bits, not one bit as in floating-point arithmetic.'? Compressing the sign into one bit raises the
difficulty of having objects +0, -0, +NaN, and —NaN where only 0 and NaN can be justified algebraically.

1 :a>0;
0:a=0;

sgn(a) = . Z<0', (Eqn. 1)
O :a=0>.

We allow all fractions of integers, n;/d;, but reduce them to a canonical form which is the usual form for rational
numbers, extended to deal with fractions that have a zero denominator.

We compute the highest, common, signed denominator, k, of non-zero numerator »n; and non-zero denominator o, as
follows. We compute ¢ as the greatest, common, positive divisor of n, d; . We then compute & = sgn(d;)c and find the
unique n,, d, such that n; = kn, and d, = kd,. Then:

0/1 :n = 0,d,#0;
the canonical form of a fraction of arbitrary integers n,/d, is < sgn(n;)/0 : d; = 0; (Eqn. 2)
ny/dy, : ny,d; #0.

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

For all fractions of integers in canonical form we define equality, ordering, and the arithmetical operations as follows.
Note that the result of the arithmetical operations, (Eqn. 6) — (Eqn. 9), must be reduced to canonical form.

n/d; = ny/d,iffn; = n, & d, =d,. (Eqn. 3)
n/d, = o & n,/d, = —o or
ny/d,>ny/d, iff (Eqn. 4)
nyd,>nyd,.
n/d;, = -0 & ny/d, = oor
n,/dy <n,/d,iff (Eqn. 5)
nyd, <n,d.

d At mesd (ny+ny)/0 : d; =d, = 0; (Eqn. 6)
n n = n.
o (nyd,+n,d,)/(d,d,) : otherwise. &

~(n,/d)) = (-n})/d, . (Eqn. 7)
(n,/d))x(ny/dy) = nyny/dd, . (Eqn. 8)
(n,/d,)" = (d,/n,). (Eqn. 9)

From (Eqn. 3) we have that all of the transrational numbers, Q* = QU {-x,0,d}, are distinct over equality. In
particular, ® = @, thatis, 0/0 = 0/0, whereas the IEEE standard'? has NaN = NaN , that is, 0/0 = 0/0 . This difference
arises because the IEEE standard assumes that 0/0 is not a number and so has an undefined semantics, whereas the
tangent argument given in our introduction proves that 0/0 is a number. This number has a well-defined semantics, as we
are now demonstrating.

In the following tables: ¢; = n,/d;, with n,d;>0, -0 =-1/0, 0 = 0/1, o = 1/0, and ® = 0/0. In Table 1: the
element 7" means unconditionally true, ' means unconditionally false, and C means conditionally true or false, identically
as it is true or false in rational arithmetic. In Table 2: and Table 3: the number ¢, has its magnitude calculated exactly as

in rational arithmetic, and the alternate sign in +¢, denotes that the sign is fixed exactly as in rational arithmetic.

Note, from Table 1:, that all of the rational (and real) numbers, augmented with o are well-ordered on the number line
and that @ is not ordered with respect to any number on the line and, therefore, lies off the number line as shown in
Figure 1. This is consistent with complex, quaternion, and octonion arithmetics where numbers off the line are not
ordered, but do have a modulus. We now derive the modulus of the strictly transrational numbers. Thus:

|o| = ng= JO = 0; (Eqn. 10)
o] = won? = oo = o0 = oo = oo = |-, (Eqn. 11)

By contrast, the IEEE treatment'” of ordering and equality is incoherent. In particular, the IEEE definition that 0/0 = 0/0
is not founded on any numerical property, but is motivated by the mistaken view that 0/0 is not a number.

()

o
® @ ®
—00 0

Figure 1: Nullity lies off the real number line augmented with positive and negative infinity.

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

-4, 0 q5 —o0 0 0]
ny/d,>ny/d,
(-ny)/d, 0/1 n,/d, (-1)/0 1/0 0/0
-4, (-ny)/d, C F F T F F
0 0/1 T F F T F F
q, n,/d, T T C T F F
—o0 (-1)/0 F F F F F F
0 1/0 T T T T F F
(o) 0/0 F F F F F F
Table 1: Greater Than
-4, 0 q5 —00 0 0]
ny/d,+ny/d,
(-ny)/d, 0/1 n,/d, (-1)/0 1/0 0/0
-4 (=ny)/d, —q3 -4 *q, -0 @© @
0 0/1 -4, 0 q5 —00 o0 0]
q, n,/d, *q; q, q; . o0 [0}
—00 -1)/0 —0 —00 —00 —00 [O]
0 1/0 0 0 0 () 0 0]
(O] 0/0 () () () () (0]]
Table 2: Addition
—q, 0 q, —0 o O]
n/d; xny/d,
(-ny)/d, 0/1 ny/d, (-1)/0 1/0 0/0
—4 (-ny)/d, 43 0 e o —©)
0 0/1 0 0 0) D 0]
9 ny/d 43 0 43 % «© o
—o0 (-1)/0 0) —00 © —0)
0 1/0 —00) 0 —0 0)
(0] 0/0 [} [0} (O] 0] (o) (o}

Table 3: Multiplication

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

Note, from Table 2:, that oo+ 0 = o and, from Table 3:, goo = o, both of which are consistent with Cantor arithmetic
(the arithmetic of cardinal numbers).l(’ The whole of Table 2: and Table 3: is consistent with IEEE, floating-point
arithmetic.'”> In particular, (—o)+(-00) = -0 and o-o = ®. Thus, transrational arithmetic defines the same
arithmetical operations on the strictly transrational numbers as IEEE, floating-point arithmetic does, but has the advantage
that ordering is well defined.

Allowing division by zero in augmented versions of the standard arithmetics usually introduces a contradiction arising
from the axioms 0 xn = 0 and nxn ' = 1 for all numbers , whence 0 x 0! = 0, 1. However, transrational arithmetic
does not introduce this contradiction, because:

(Eqn. 12)

1 D :ne{-mw00 d},
nxn = .
1 : otherwise.

Transrational arithmetic is generalised to transreal arithmetic, as usual,’ by writing an irrational number ;i as i/1. The
extension to complex, quaternion, and octonion arithmetics follows immediately, as does the extension to integer and
natural arithmetics.

In conclusion, transrational and transreal arithmetics allow division by zero without introducing the usual contradictions
attendant on division by zero. The real number line, augmented with negative and positive infinities, is well ordered and
nullity, which lies off the number line, is not ordered. This is consistent with all of standard number systems, but is not
consistent with IEEE, floating-point arithmetic which is now seen to be incoherent. In particular, floating-point arithmetic
uses one sign bit, but real arithmetic has three signs — negative, zero, positive — and transreal arithmetic has four signs —
negative, zero, positive, and nullity. If floating-point arithmetic is to account correctly for the number 0/0 then it must
encode four signs, which it could do in exactly two sign bits. It could then be a total, trans-floating-point arithmetic with
no error states. > This would remove the need for exception handling, thereby simplifying floating-point units, and would
mean that all floating-point pipelines operate without stalling on exceptions. This might make transfloat processors
smaller, more reliable, and cheaper than floating-point processors.

3 The Turing Machine

3.1 Spatiotemporal Properties of the Turing Machine

Turing defines the spatiotemporal properties of his machine in a number of places. In,”” page 439, we read:

Strictly speaking there are no such machines [as discrete state machines]. Everything really moves
continuously. But there are many kinds of machine which can profitably be thought of as being
discrete state machines. For instance in considering the switches of a lighting system it is a
convenient fiction that each switch must be definitely on or definitely off. There must be
intermediate positions, but for most purposes we can forget about them.

Thus, Turing accepts a model of physics in which all physical motions are continuous (as may be the case in a quantum
physics with a temporal continuum of hidden variables) but he requires that his continuum can be digitised. This implies
that the digits are closed and bounded, i.e. compact, spaces. Turing makes this spatial claim explicit in,!” page 249:

If we regard a symbol as literally printed on a square we may suppose that the square is 0 <x<1,
0<y<1. The symbol is defined as the set of points in this square, viz. the set occupied by the
printers ink. If these sets are restricted to be measurable, we can define the “distance” between
two symbols as the cost of transforming one symbol into the other if the cost of moving unit area of
printers ink unit distance is unity, and there is an infinite supply of ink at x = 2, y = 0. With this
topology the symbols form a conditionally compact space.

Regardless of whether symbols are printed on paper, encoded in electrical voltages, or otherwise instantiated, the
restriction that the sets are measurable is required for practical digitisation, but this leads to the conditional conclusion that
digitised symbols are compact spaces. Alternatively, if the sets are not measurable then digitisation cannot be defined in

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

any physically realisable way, but digitised symbols may then have a non-compact topology. Thus, on Turing’s reading of
physics, which is conditional on the measurability of quantities, symbols are compact spaces. It follows that the whole of
the Turing Machine has spatial properties.

Firstly, in,'” section 1, page 231, we read:

The possible behaviour of the machine at any moment is determined by the m-configuration ¢, and
the scanned symbol S(r). This pair q,, S(r) will be called the “configuration”: thus the
configuration determines the possible behaviour of the machine.

Turing goes on to define the m-configuration as a tuple of symbols. We may, therefore, read the above as defining that the
possible behaviour of the machine, at one moment, is entirely defined by symbols, and that these symbols are compact
spaces. In other words, the possible behaviour of the machine, at an instant, is defined by a tuple, or lattice, of compact
spaces. In,'’ page 240, Turing defines a standard description in terms of five-tuples. Therefore the machine Turing
describes is defined, at an instant, by a 5D lattice of compact spaces. The behaviour of the machine over time relies
additionally on a tape. Turing defines that the tape is one dimensional,'’ page 249. As he has earlier defined that the tape
head may move left and right relative to the tape it implies that the tape is an orientable, 1D space.

1 assume then that the computation is carried out on one-dimensional paper, i.e. on a tape divided
into squares. 1 shall also suppose that the number of [different] symbols which may be printed is
finite. If we were to allow an infinity of symbols, then there would be symbols differing to an
arbitrarily small extent.

In,'” page 232, Turing defines that the continuous motion of his machine may be understood as if it were a discrete motion
taking place in units of a move.

At any stage of the motion of the machine, the complete sequence of all symbols on the tape, and the
m-configuration will be said to describe the complete configuration at that stage. The changes of
the machine and tape between successive complete configurations will be called moves of the
machine.

Turing illustrates this arrangement with an example,'” on page 235. As moves are successive we may hold that they take
place in an orientable time-line, requiring that a temporal dimension be added to the spatial dimensions of the machine.

In summary, the Turing machine is defined by a 5D lattice of compact spaces that is the m-configuration of the machine,
and a 1D lattice of compact spaces that is the machine’s fape. Together these form a 6D lattice called the configuration.
This 6D lattice changes discretely over a 1D, time axis. Thus, a 7D lattice of compact spaces describes all of the moves of
a Turing Machine. In other words, the Turing Machine is a 7D lattice of compact spaces.

Turing defines that the machine’s vocabulary of symbols is finite. He makes no use of his observation that symbols can be
transformed one into the other. By contrast, the perspex machine® uses an infinite continuum of perspexes as super-
symbols and can exploit the transformation of one super-symbol — a Turing computable or incomputable number — into
another, and hence the transformation of one operation into another.’

It should be noted that some people regard the Turing Machine as being a purely symbolic machine with no spatial
properties whatsoever. This view finds no support in Turing’s writings”'20 and is contrary to accepted views of physics.
We invite anyone who believes that symbols are devoid of spatiotemporal properties to say how it is that symbols can be
recorded and processed without occupying any physical space, and without this processing occurring at any physical time.
An appeal to Platonic Ideal Forms fails immediately, because the Forms have spatial properties, such as being a perfect
circle, and temporal properties, such as existing forever without decay. In any case, the argument that the existence of a
symbolic description extinguishes spatial properties is absurd. The existence of analytical geometry does not deprive
Euclidean space of spatial properties, far less does it eliminate space from the physical universe we live in.

3.2 Non-Universal Nature of Turing Computation

Turing'” defines a machine, U, beginning at page 241, that can emulate all of his automatic-machines. However, U
cannot emulate his choice-machines and, in particular, U cannot emulate his oracle-machines. 1t is an abuse of language

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

to call U a “universal Turing machine.” This common abuse conceals the possibility of constructing an abstract machine,
such as the perspex machine, that can emulate all of Turing’s machines. Before seeing how this is done, it is useful to
consider the behaviour of Turing’s machines. See,!” page 232. In the following extract, Turing refers to his section one.
The relevant extract appears as the third quotation in our section immediately above.

If at each stage the motion of a machine (in the sense of §1) is completely determined by the
configuration, we shall call the machine an “automatic-machine” (or a-machine).

For some purposes we might use machines (choice machines or c-machines) whose motion is only
partially determined by the configuration (hence the use of “possible” in §1). When such a
machine reaches one of these ambiguous configurations, it cannot go on until some arbitrary
choice has been made by an external operator. This would be the case if we were dealing with
axiomatic systems. In this papers I deal only with automatic machines, and will therefore often omit
the prefix a-.

Thus, choice-machines are non-deterministic, they stall when faced with ambiguity. This kind of Turing machine is
restarted by an external agency that lies outside the domain of Turing’s theory of computation. By contrast, abstract
perspex-machines are deterministic and, therefore, require no external agency. The abstract, universal perspex-machine
has cells, each of which is a perspex machine, that can examine and interact with its subordinates. Thus, a cell can be the
external agency that restarts another, internal, perspex machine. In this way the restart is part of the theory of perspex
computation. Furthermore, the perspex thesis links the abstract perspex-machine to the physical universe so that there is,
by hypothesis, nothing in the physical universe that is external to a perspex machine. In other words, there are no agencies
external to the perspex machine. In this physical sense, no abuse of language is involved in the phrase, “universal perspex-
machine,” because the perspex machine can, by hypothesis, carry out all physically possible computations. However,
cardinality limits on the universal perspex-machine mean that while it can emulate infinitely many,l(’ N, perspex
machines, it cannot emulate them all, X, .

The universal perspex-machine, or something like it, is needed to deal non-arbitrarily with axiomatic systems where there
is a choice, at any one step of a proof, of which axiom to invoke next or which new sentence to accept as an axiom.

Turing,19 page 172-173, defines a special kind of choice-machine, called the oracle-machine, or o-machine, that evaluates
functions, equivalent to the halting function, that cannot be computed by an automatic-machine and which cannot,
therefore, be computed by U.

Let us suppose that we are supplied with some unspecified means of solving number-theoretic
problems; a kind of oracle as it were. We shall not go any further into the nature of this oracle apart
from saying that it cannot be a machine. With the help of the oracle we could form a new kind of
machine (call them o-machines), having as one of its fundamental processes that of solving a given
number-theoretic problem. More definitely these machines are to behave in this way. The moves of
the machine are determined as usual by a [state] table except in the case of moves from a certain
internal configuration o. If the machine is in the internal configuration o and if the sequence of
symbols marked with l [on the tape] is then the well—formedf formula A, then the machine goes into
the internal configuration p or t according as it is true or not that A is dual [halts]. The decision as
to which is the case is referred to the oracle.

Turing is perfectly clear that oracle-machines are not automatic-machines. He continues as follows.

These [o-]machines may be described by [state] tables of the same kind as those used for the
description of a-machines, there being no entries, however, for the internal configuration o.

In other words, an automatic-machine, and hence a U machine, has no specification in its state tables of how an oracle
works. It simply stalls in the state o and waits for the oracle to re-start it. In other words, it is possible to conceive of
computations, such as those performed by oracle-machines, that cannot be performed by the, so called, Universal Turing
Machine, U.

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

In a footnote to the second quotation above, Turing writes:
7 Without real loss of generality we may suppose that A is always well formed.

It is important to recognise that Turing makes this statement in the context of a paper19 dealing with logic. Standard logics
have no use for badly-formed formulae so Turing feels no loss at their exclusion. However, the loss is grievous. Human
computers can process badly formed-formulae, for example, human mathematicians can, and all to often do, correct flaws
in mathematical presentations. Yet Turing declares that this form of human computation is beyond the power, even, of an
oracle-machine that can solve the halting problem for an automatic-machine. By contrast all symbolic (and super-
symbolic) formulae translate into geometrical shapes in the perspex machine, and are processed by it. Thus, the perspex
machine is total, or universal, over all formulae, both well-formed and badly-formed. In this sense the perspex machine
captures a very important aspect of human computation that the Turing machine misses — the ability to make mistakes, to
work out their consequences, and, potentially, to correct them.

3.3 Super-Turing Computation and Turing’s Halting Problem

AKk1! reviews the known kinds of super-Turing computation, though some of his conclusions are reversed by Welch.?! Akl
reviews hypercomputations where the computational steps in a computer speed up. For example, if the speed of
computation doubles at each step, the machine can complete infinitely many steps in two units of time.” The proof of this
is similar to Zeno’s arrow paradox. Hence, a hypercomputer can solve Turing’s halting problem in a finite time, which
may be scaled to unit time. Turing’s halting problem requires that X, computations are performed, where X is the
cardinality of the integers.16 However, the perspex machine can lay out computations on a segment of the real number
line. This segment has the cardinality of the real-number line'® itself, N, = 27 N, - The perspex machine can map a line
of computations onto a result in zero time, but the result has not collapsed into a fixed state until it is read from a point at
a different instant. So it may take an asymptotically small, but finite, time to access the completed computation. This time
may be scaled to unit time. But the perspex machine can do more than solve the halting problem for one Turing machine.
The powersetl(’ of a set of cardinality N, has cardinality X, so the perspex machine can solve, in unit time, the halting
problem for the set of all Turing machines. In other words, the perspex machine can partition the set of all Turing
machines into halting and non-halting subsets in unit time. This result holds for all of Turing’s automatic, choice, and
oracle-machines.

Akl also describes a class of computations where a Turing machine capable of performing » steps of a computation in one
unit of time fails in computations that require » + 1 steps. He identifies three classes of these problems, though the first
two classes are similar. Firstly, problems where » + 1 time-varying data must be read from multiple Turing tapes in one
unit of time. Secondly, problems where » + 1 physical variables depend on each other and must be measured, and hence
read from multiple Turing tapes, in one unit of time. And, finally, problems where a mathematical constraint holds at all
times between n + 1 data that are present within the Turing Machine. Whilst Turing machines with more and more tapes
may be constructed, there is always a problem that is too large for the machine. Thus, Akl concludes, the Turing machine
is not a candidate for the title of “universal computer.” By contrast, the perspex machine has access to N, states so it can
solve all of the problems reviewed by AKL! We do, in fact, claim that the perspex machine is a universal computer over
the domain of physically possible computations up to cardinality N,, and that it does physical things that are not
computations.

3.4 Summary

The Turing machine has spatial properties that derive from several sources. Firstly, Turing defines that symbols are
compact spaces. Symbols can be transformed one into another, but Turing makes no use of this. Secondly, Turing defines
that the machine’s tape is a 1D, orientable object. Thirdly, Turing defines that the entire machine, at an instant, is a 5-tuple
of symbols or, equivalently, a 5D lattice of compact spaces. Finally, the machine changes state over a 1D, orientable time-
line. Therefore the Turing machine is a 7D lattice of compact spaces. This lattice lies within the perspex machine, as
demonstrated by the existence of the proof given later of the super-Turing nature of the perspex machine.

Turing defines three kinds of machine in the papers'’-’ cited here: automatic-machines, choice-machines, and oracle-

machines. Turing’s machine U which is, today, known as the Universal Turing Machine, is universal only over the
domain of automatic-machines. It cannot emulate choice-machines or oracle-machines. Both choice-machines and oracle-

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

machines are non-deterministic, they stall in the presence of ambiguity and must be re-started by an external agency. By
contrast, the perspex machine is deterministic and can emulate automatic-machines. It can, however, halt deterministically
by executing the perspex halting instruction. Hence, it can emulate a non-deterministic stall by finding the non-
determinism and halting. The abstract, universal perspex-machine can also emulate a restart, because it contains many
communicating perspex machines which can restart their subordinates. Therefore it can emulate choice-machines. The
abstract, universal perspex-machine has sufficient computational power to solve the Turing halting problem for the entire
set of Turing machines. Therefore it can emulate the entire set of oracle-machines. Furthermore, the abstract, universal
perspex-machine can execute all known forms of hypercomputation — up to cardinality X, . As we shall see next, it can
even solve its own halting problem, and the halting problem for any one perspex machine, and the halting problem for all
X, physically realisable perspex-machines, but it cannot solve the halting problem for the entire set of perspex machines
with cardinality N, , because it has access to at most N states.

The perspex machine can process all formulae, be they well- or badly-formed. In fact, it can process continuous things
that are not formulae of any kind. It is so general that it provides a universal model of physics with cardinality no greater
than N, .

4 The Universal Perspex-Machine

The universal perspex-machine differs from previous versions of the perspex machine in three important respects. Firstly,
the machine uses a general-linear instruction, not a linear one. This makes it easier to operate on individual elements of a
perspex by isolating a single element by pre- and post-multiplication by j-ma‘crices,z’15 and by composing a perspex from
individual elements via matrix addition. Secondly, the universal perspex-machine has a cellular structure that allows
fractal machines to be constructed with cardinality X, . Thirdly, control can jump simultaneously in all spatial axes, not in
only two axes as formerly. Hence, jumper'* instructions do not have to be introduced artificially. We now describe the
universal perspex-machine, repeating parts of earlier definitions, so that a complete specification is given here. The reader
may still wish to refer to earlier papers for a fuller account of the operation of the machine.*”>'*!> We also discuss the
perspex halting problem.

4.1 General-Linear Instruction

Firstly, we define the general, and some special, perspexes.

X y1ah
IERCRCEE (Eqn. 13)
X33 23 43

X4 Vg 24 t4_

0000

z= (0000 (Eqn. 14)
0000

0000

DD D D

H=|PPPQ (Eqn. 15)
ODODD

DD D D

Now we define the operation of the perspex machine.

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

H.
continuum(a) = {;’ @ I; (Eqn. 16)
La = H.

. _—>
Jump((z +p),, 1) transfers control form p:

T Em—
0 ([tl 001, +p)if (2, +p<0);
—_
t2 0 t4 +p) if (zy;+p=0); (Eqn. 17)
to

—_
to(00 ¢ 14 +p) if (zy; +p>0);

t t) t3 t) otherwise.

continuum(z?p) + Z(x([) +p(i)) (y(l) +p(l)) g (Z?P);
- (Eqn. 18)

A —_—>
Jump((z +p) ;. 0)-

The perspex machine is a 4D space where every point has transreal co-ordinates. Every point in perspex space contains a
perspex. A perspex, (Eqn. 13), is a 4 x4 matrix of transreal co-ordinates laid out as column vectors x, y, z, ¢t. The

perspex machine is started at a point p or at several points, p([) , in space, which may include all of the points in a volume

of space. At each point the machine performs the operation given by (Eqn. 18) on the perspex stored at p . The notation p

—_— —
denotes the contents of the point p, i.e. the perspex stored at the point p. Thus, (x+p)(y +p) denotes a multiplication of

perspexes stored at locations x+p and y +p. The addition of the continuum term forces the machine to increment the

—
contents of the point z + p . The summation of products, Z(x(l) + p(l)) (y(l) + p(l)) — (z+p), denotes that i perspexes may

1
form products and write them, by incrementation, into the common location z+p. The function continuum maps the
halting perspex, H, (Eqn. 15), onto the zero matrix, (Eqn. 14). This manoeuvre prevents the increment being forced to A

in every case.*” The Jjump function transfers control from the point p to a, not necessarily distinct, point p' in space. The

otherwise clause of (Eqn. 17) is satisfied when (z+p),, = ®. If p' contains the halting perspex, H, then the control

thread halts, otherwise it continues at p'. Every point in space contains H by default. Non-null programs are created by
instantiating some points with non-halting perspexes and starting the machine at one or more of these points.

Originally the perspex machine employed absolute addressing of data to reflect the fact that the registers in an Unlimited
Register Machine'! or, equivalently, the read-write head of a Turing machine,'” is at a fixed, absolute position. However,
the perspex machine also employed relative addressing of control to reflect the fact that in the Unlimited Register
Machine control moves forward, by default, to the adjacent instruction in a program, and in the Turing machine the tape
moves relatively left or right by one cell. Whilst this lead to a simple constructive proof that the perspex machine can do
everything that the Turing machine can do, the mixture of absolute and relative addressing is arbitrary in terms of the
perspex machine itself. The type of addressing can be changed by striking out p in parts of (Eqn. 18). With p in place the
formula describes relative addressing, with p struck out it describes absolute addressing. (Eqn. 18) explicitly describes a
4D machine, but fixing one or more rows or columns of a perspex reduces the dimensionality of the machine. As written,
the formula involves a matrix multiplication, but other multiplications could be used. For example, previous versions of
the perspex machine used a normalised matrix-multiplication to instantiate projective geometry.” Previous version also
lacked the addition term, making them linear, but not general-linear, perspex machines. Replacing (Eqn. 18) with other

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

functions or allowing higher dimensional perspexes would radically alter the machine. Thus, an entire family of perspex
machines is created by restricting or modifying the formulae given above.

A perspex machine with all absolute addressing is tied to its input and output devices. In order to duplicate a processing
thread so that, say, adjacent pixels in an image are processed, it is necessary to transform a program by transforming both
the location of its perspexes and their contents. With relative addressing it is necessary to change only the locations of the
program. Mixed addressing machines require a correspondingly more complex transformation to relocate them. The point
at issue is that replicating and relocating programs is an inherent part of “genetic” algorithms, but relocating a relative
program can easily dissociate it from its input and output devices. In order to reduce this sensitivity to position it is
possible to interpolate perspexes7 so that a small movement away from an input or output device, in other words a
synaptic gap, has only a small effect on the data transferred. But if this approach is taken, the form of interpolation is a
critical part of the machine, in much the same way that chemical concentration gradients and electrical-field decay play a
critical role in animal brains. Thus, when trying to admit “genetic” replication one is very soon faced with “physical”
design considerations, even when implementing a virtual perspex-machine. This is because the perspex machine is
inherently spatial.

4.2 Proof of Super-Turing Computation

The perspex machine is inherently capable of at least one super-Turing operation because the jump part of its instruction,
(Eqn. 17), can compare an arbitrary, real number to zero. We showed earlier that the linear perspex-machine can do
everything that the Turing Machine can do.” We now modify that proof so that it proves that the general-linear perspex-
machine can do everything that the Turing Machine can do. In developing this proof we take advantage of j-matricesz’15
to isolate an element of a matrix. We use the addition term in the perspex instruction to compose a matrix from
corresponding elements. Thus, the proof stands as an example of the use of the general-linear instruction.

In order to generalise the proof,5 all we need to show is that the general-linear perspex-instruction can compute the four
operations 4, C, G, T of the Unlimited Register Machine (URM).5 Il As all of the 4 x 4 matrices used in the proof are
identity in the middle two rows and columns, it is convenient to adopt the short hand of omitting these two rows and
columns. We begin by giving the j-matrices.

Jo=2z=99 g =10 =00 == (1O (Eqn. 19)
00 00 01 01

4.2.1 Perspex G

Writing Z into the location z zeros the element %11 as required by the URM instruction G(z). In order to achieve this we
first write H into location z so that the addition term has no effect, we then form Z as a product and write it into the
location z . Hence, with control passed to successive instructions, it is sufficient to compute:

. > > : 2
continuum(z) + IH — z; ump(z, ,?);
@) jump(z, . 7) (Eqn. 20)

continuum(%) +1Z—>%; jump(%1 . 1).

4.2.2 Perspex C

The URM instruction C(z) increments the contents of register z. Adding J; to the location z has the same effect. Hence,
it is sufficient to compute:

continuum(2) + - 2 jump(%ll, t). (Eqn. 21)

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

4.2.3 Perspex T

The URM instruction 7(m, n) writes the contents of register m into register n . Hence, with control passed to successive
instructions, it is sufficient to compute:

continuum(i) + [H — 7 jump(i, |, 1); (Eqn. 22)
qn.

continuum(%) + I —> 7 jump(?tll, 1).

4.2.4 Perspex A

The URM instruction 4(m, n, p) compares registers m and n then jumps to instruction p if m = n, but otherwise
advances to the next instruction ¢ in the program. It is sufficient for a perspex to jump depending on the value of
my;—ny; . This may be done using an infix subtraction matrix, S, to compute an intermediate perspex, R, with
Fyp = My =y

F I LTI I LR I VR TR A
1 0 10 1 0

Hence, a sufficient perspex program computes R and then performs the jump:
jump(2 [pr a0 (Eqn. 23)

Where p’ and ¢’ are, respectively, the relative jumps from the current location z to p and to ¢ . This completes the proof.

4.3 Perspex Fractals

Fractals'" are geometrical point-sets. Rendering a fractal in perspex space arranges that a perspex is stored at every point
in the fractal. Thus, the fractal becomes a perspex fractal. However, we want to form fractals of perspex machines so that
one perspex machine may emulate another and so that a perspex machine may explore the space of computations. In this
way, we might hope, a fractal will explore and prune computations in a similar way to a symbolic, tree-based search in a
Turing machine, but always retaining the cardinality and spatial properties of the perspex machine.

There are many ways to construct fractals of perspex machines, but, perhaps, the simplest is to map the whole of perspex
space into a unit hypercube and then to form a fractal from the hypercube. Figure 2 shows a cross-section of one such
arrangement. The real part of perspex space is mapped onto a unit hypercube using the arctang function** modified so
that it uses a signed, real, square root instead of a signed, integer, square root. Hence (arctanq(a) + 1)/4 maps the whole of
the real-number line, with ordinate @, onto the line segment (0, 1/2]. We construct the hypercube a as shown in the
Figure. We then form the mappings « — 3/4 and ® — 1. This completes the construction.

We call a space that contains a perspex machine a cell. By constructing the hypercube cells with arctang we arrange that
the cell is open below and closed above. Hence, we may stack cells without any space between them, yet they remain
disjoint. Operating within a cell by companding with arctang prevents a cell from communicating with adjacent cells, but,
if one cell contains another, the superordinate cell may communicate with a subordinate cell. Hence, a superordinate cell
may be an oracle to all of its subordinates, and the first cell may be an oracle to all perspexes, including itself. The ability
to operate by companding requires that a perspex machine can run an emulator that accesses the local cell as if it were the
whole of perspex space. An emulator can also be used to solve the perspex halting problem.

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

@ o 0
© [I)
a

0 172 3/4 1

Figure 2: Cross-section of a perspex machine mapped onto a unit hypercube.

It is useful to lay out N, cells along a line segment. This may be done by using an x-y plane of perspexes to index a
unique length along Peano’s plane-filling curve.'? This curve is defined in the range [0, 1], but the lower bound is not
used in the arctang map so the Peano curve may be scaled so that it is accessed in the range (0, 1/2]. This range of
indexes forms the y-axis of a cubical cell, with the z-axis a conventional spatial axis, and the #-axis a conventional
temporal axis. The perspex machine in this 3D cell uses companding to operate on it as if it were a 4D perspex machine.
N, of these cells are laid out in the range (0, 1] along the x-axis. Thus, a fractal of N, cells is mapped onto the unit
hypercube.

4.4 The Perspex Halting Problem

Turing’s halting problem is an abstract problem. A specification of an automatic-machine is placed on a Turing machine’s
tape and the machine is to decide whether or not the specified machine will halt if it is executed.!”’ Turing shows that no
automatic-machine can solve this problem and that whilst an oracle-machine can solve the halting problem for an
automatic-machine it cannot solve it for itself and, hence, an oracle-machine cannot solve the halting problem for an
arbitrary oracle machine.!” Both Turing’s and Godel’s proofs rely on enumeration so they apply to machines with a
cardinality of at most X, but the perspex machine has cardinality N, so it is immune from the negative results in these
proofs. In fact, many hypercomputers can solve Turing’s halting problem for automatic-machines.’

The perspex machine is not simply a computer so a solution to an abstract halting-problem does not necessarily deal with
all of the halting cases of a perspex machine. We might allow that the perspex machine takes input from the universe at
various times during its operation and that it is re-started at various times by some oracles and that some oracles induce
error in the machine. Even in these cases we might hope for a solution to the halting problem by exploiting the time
travelling abilities of the perspex machine by having it look into the future to see if it has halted; but time travel itself
raises difficulties. It can be the case that a perspex machine reads and writes perspexes from and to a time distant from the
time at which the perspex is executed. The machine has no record of execution so to detect writes it must copy the whole
of spacetime and look for changes. In other words it must emulate perspex spacetime to solve the halting problem. But
emulation provides a simpler, direct solution. The perspex machine halts only when it executes the halting instruction, H,
so an emulator can flag the halt before executing A . An emulation can detect its own halting over all of the time lines it
explores and can arrange to store the halting decisions at fixed points in spacetime. Thus, the machine may have access to
its halting decisions at any time by time travel, or at some fixed, future time by accelerating its operations, subject to
interference from an oracle. A universal perspex-machine with emulation may solve the halting problem for any one
perspex machine, including itself, and for a collection of N, perspex machines. By hypothesis this is all of the machines
that can be instantiated in the universe. However, the universal perspex machine cannot solve the halting problem for the
set of all possible perspex machines because this set, being the set of all subsets of perspex space, has cardinality X, .
Naturally, one is most interested in halting results that relate to physically possible machines; but it is useful to consider
emulation in its own right, because it allows for executive control, such as imposed by a computer’s operating system and,
we suppose, by a human’s consciousness.

Figure 3 gives pseudo code for a perspex emulator. The conditional structures and assignments are explained in.'> The
arithmetic and jump parts are explained in the current paper. The emulator reserves one location, &, as a global flag to
indicate whether the emulator is still running or else has halted. The emulator is composed of a 2D plane of perspexes
a"” . The " line in a plane emulates one control thread. The perspex " isa flag that indicates whether the current
thread is still running or has halted. The program is entered at the label enter: where the emulator is initialised with the

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

N, perspexes to be emulated. The label loop: denotes the instructions that clear the global flag, 5, and start one cycle of
the emulator. The forall structure indicates that all of the lines of the emulator are to by executed in synchrony. The
emulator checks to see if the emulated perspex is the halting perspex H, if so it does not increment the global flag &, but
it does clear the local flag a""? to indicate that the current thread has halted. It then performs the exit actions and halts.
Otherwise it emulates the current perspex. It increments the global flag and sets the local one. It constructs two copies of
the emulated perspex. One copy has its jump part munged so that it performs the arithmetic specified by the emulated
perspex, the other has its arithmetic part munged so that it fetches the next perspex to be emulated as if it had performed
the specified jump. The emulator then checks the global flag. If it has not been incremented then all of the emulated
threads have signalled a halt. The emulator performs any exist actions for each time line and then halts. Otherwise it
jum&)s back to the label loop: and executes another cycle of the emulator. When examined from a time different from both
a""? and b the oscillating flags have collapsed into a fixed state.® Thus, the emulator solves the halting problem for the
conditions stated, though one might want different conditions and a different causality.
enter: write the perspexes to be emulated into a .
loop: write Z to b as a global flag indicating that all emulated threads have halted.

forall a(i’ D do
it "V =-n

then write Z to a(l’)

to flag the halt of the current emulated control thread.

jump to label 3 to execute the exit actions and the halt.

(i,0)

else write /to a to flag continuing execution of the current emulated control thread.

increment b to flag continuing execution of an emulated control thread.

(i, 1) (i,2)

toa to preserve a copy of the perspex to be emulated.

overwrite a}il‘l) so that it specifies a jump to label 1 in the emulator.

(@i 1)

write a

jump to a to execute the arithemetic part of the emulated instruction.
label 1: write @' so that it reads a](.f’42), performs identity, writes result to at” l), and jumps to label 2.
jump to a'"*) to emulate the jump part of the emulated instruction.
label 2: if b=2Z
label 3: then perform exit actions.
execute H.

else jump to loop.
endif.
endif.

endforall.
Figure 3: Pseudo code for a perspex emulator.

5 Discussion

We have proved that 0/0 is a number. It lies off the number line and is not ordered with respect to any number on the real-
number line augmented with positive and negative infinity. When nullity arises as the result of an exact calculation it
means that there is no unique solution on the number line — though there may be infinitely many non-unique solutions on
the line.” It can also be that nullity itself, which lies off the number line, is a unique solution? or else one of many.2 Thus,
nullity itself gives no information about whether a unique solution exists or where any non-unique solutions lie on or off
the number line. We summarise this by saying that nullity means “no information,” even though additional calculations
might allow us to classify the nullity solutions. This leads naturally to the use of nullity as a “don’t know” or “don’t care”
value in databases and avoids the widespread bug of using a supposedly out-of-range number to mean “don’t know” —
only for later software updates to bring the value into range with disastrous consequences. We suggest that having a

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

unique number, nullity, that means that there is no information and which does not interfere with any calculation on the
number line is as useful to a manufactured computer as zero is to a human computer.

The “no information” interpretation of nullity is also consistent with the perspex machine. The perspex with all elements
nullity is the halting perspex, it gives no information about how the computation should be continued. This is the default
perspex in the whole of space so that uninstantiated parts of space automatically instruct a halt. This interpretation makes
software more secure. The universal perspex machine allocates spaces for calculations in a fractal. No attempt to read,
write, or execute perspexes outside the allocated space can be instructed, and any attempt to execute an uninstantiated
perspex inside the allocated space halts. Thus, calculations can be kept within secure fractal bounds, no matter how
intricate or close the calculation of results becomes.

In theory the perspex machine is super-Turing, but we have no physical means of implementing a perfect perspex-
computer so we cannot access these super-Turing properties in practice. However, a digital computer can access the
properties of fractal security, totality of arithmetic, blending of perspex programs, and, no doubt, many more properties.
This makes the perspex machine useful in everyday computations. In particular, transrational arithmetic is so simple that
it could be taught to primary school children in place of teaching fractions. If this were done, it would mean that the
general population would have access to a total arithmetic, rather than, as now, using a partial arithmetic which fails on
division by zero, and which encourages programmers to specify faulty computer arithmetic and introduce bugs by using
real numbers to denote “don’t know” and “don’t care” values. The economic and social value of more secure computation
might be considerable.

6 Conclusion

We have proved that nullity, 0/0, is a number for the historically acceptable reason that it arises as the solution to an
equation, in this case, an elementary trigonometric equation. Nullity, and positive and negative infinity, can be added to all
of the standard arithmetics. This makes them total, which is to say that no exceptions (processing errors) can occur within
the arithmetics. Hence, floating-point units and, more generally, arithmetical processing units have no use for exception
handling circuitry. This means that they can be fabricated with fewer elements on a chip, making them cheaper and more
reliable, as well as being inherently more useful because they operate correctly in corner cases that are currently
problematical. In particular, the transarithmetics deal coherently with 0/0, whereas the IEEE, floating-point treatment '
of 0/0 is incoherent.

We have also introduced a general-linear form of the perspex instruction and have shown that it is super-Turing. We have
shown that the abstract perspex-machine can solve its own halting problem and that it can partition the entire set of Turing
programs into the Turing computable and Turing incomputable subsets. We also argue that Turing believed that his
machine has spatial properties, making it a special case of the perspex machine in its nature, as well as in its
computational properties. Regardless of its theoretical advantages, the general-linear, perspex instruction is of practical
significance because it greatly simplifies programming the perspex machine and implementing perspex compilers.15 It
also makes it easier to construct filters via convolution.” The perspex machine can process badly-formed formulae and
things that are not formulae of any kind. However, the perspex machine does have theoretical limitations. It cannot
compute any set with cardinality greater than the real-number line.

The ability to process badly-formed formulae is significant. It means that a perspex computer is inherently able to deal
with partial and erroneous data and, to the extent that approximately similar perspex programs instruct approximately
similar computations,7 it means that badly formed programs will not, in general, be catastrophically wrong. We might
hope that this will make perspex computers resistant to damage, will allow machine learning to improve on faulty
learning, and will support new forms of genetic algorithm. In these respects, the perspex instruction makes manufactured
computers more like human beings. This may be of interest to Artificial Intelligence and might aid the development of
more natural human-computer interfaces. One, extreme, theoretical possibility is that a manufactured computer might
blend with a human being either as an interface, or as a practical demonstration of the existence of other minds.

We have presented a very simple semantics for nullity. Nullity means “no information” whereas zero means “no value.”
We invite the reader to consider whether the development of nullity is as significant as the development of zero.

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

10
11
12
13

14

15

16
17

18
19

20
21

7 References

Akl S.G., The Myth of Universal Computation Technical Report 2005-429, School of Computing, Queen’s University,
Kingston, Ontario, Canada, K7L 3N6.

J.A.D.W. Anderson “Representing Geometrical Knowledge” Phil. Trans. Roy. Soc. Lond. series B, vol. 352, no. 1358,
pp. 1129-1139, Aug. 1997.

J.A.D.W. Anderson, “Robot Free Will” in van Harmelen, F. (ed) ECAI 2002. Proceedings of the 15th European
Conference on Artificial Intelligence pp. 559-563, 10S Press, Amsterdam, 2002.

J.A.D.W. Anderson, “Exact Numerical Computation of the Rational General Linear Transformations” in Vision
Geometry XI Longin Jan Latecki, David M. Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 4794, 22-28
(2002).

J.A.D.W. Anderson, “Perspex Machine” in Vision Geometry XI Longin Jan Latecki, David M. Mount, Angela Y. Wu,
Editors, Proceedings of the SPIE Vol. 4794, 10-21 (2002).

J.A.D.W. Anderson, “Perspex Machine II: Visualisation” in Vision Geometry XIII Longin Jan Latecki, David M.
Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 5675.

J.A.D.W. Anderson, “Perspex Machine III: Continuity Over the Turing Operations” in Vision Geometry XIII Longin
Jan Latecki, David M. Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 5675.

F. Ayres, Modern Abstract Algebra Schaum’s Outline Series, McGraw-Hill, (1965).

G.S. Boolos & R.C. Jeffrey, Computability and Logic, 3" edition, Cambridge University Press (1989).

R.M. Crownover, Introduction to Fractals and Chaos, Jones and Bartlett Publishers (1995).

N.J. Cutland, Computability, Cambridge University Press (1980).

IEEE, 754-1985 IEEE Standard for Binary Floating-Point Arithmetic.

C. Kershaw & J.A.D.W. Anderson, “Perspex Machine VI: A Graphical User Interface to the Perspex Machine” in
Vision Geometry XIV Longin Jan Latecki, David M. Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 6066
(20006).

Searl, J. R. Intentionality - An Essay on the Philosophy of Mind Cambridge University Press (1983).

M. Spanner & J.A.D.W. Anderson, ‘“Perspex Machine V: Compilation of C Programs” in Vision Geometry XIV Longin
Jan Latecki, David M. Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 6066 (2006).

S. Swierczkowski, Sets and Numbers, Routledge & Kegan Paul, (1972).

A.M. Turing, “On Computable Numbers, with an Application to the Entscheidungs Problem” Proc. Lond. Math. Soc.
series 2, vol. 42, pp. 230-265 (1937).

A.M. Turing, “On Computable Numbers, with an Application to the Entscheidungs Problem. A correction.” Proc.
Lond. Math. Soc. series 2, vol. 42, pp. 544-546 (1937).

A.M. Turing, “Systems of Logic Based on Ordinals” Proc. Lond. Math. Soc. series 2, vol. 45, pp. 161-228, (1939).

A M. Turing, “Computing Machinery and Intelligence” in Mind, vol. LIX, no. 236, pp. 33-60, (1950).

P.D. Welch, “On the Possibility, or Otherwise, of Hypercomputation” Brit. J. Phil. Sci. vol. 55, pp. 739-746, (2004).

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com/Robots/ECAI.2002.pdf
http://www.bookofparagon.com/Mathematics/SPIE.2002.Exact.pdf
http://www.bookofparagon.com/Mathematics/SPIE.2002.Perspex.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineII.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineIII.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineVI.pdf
http://www.bookofparagon.com
http://www.bookofparagon.com/Mathematics/PerspexMachineV.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

