Construction of the Transcomplex Numbers
 Prof. Tiago S dos Reis
 Dr James Anderson FBCS CITP CSci

Agenda

- Advantages of transcomplex numbers
- Containment relationships
- Construction of the transcomplex numbers
- Value to science and society

Advantages

- Transcomplex arithmetic builds on the foundation of transreal arithmetic
- Consistency of transcomplex and transreal numbers proved by construction from the complex numbers
- Transcomplexes allow the solution of mathematical and physical problems at singularities
- Transcomplexes make mathematical software more reliable

Overview

Transreal Number Line

Φ
∞

Transcomplex Plane

Revolution of the transreal number line

Φ

Containment

Real

Construction

- Aims to give sense to dividing complex numbers by zero

Construction

$$
T:=\{(x, y) ; x \in \mathbb{C}, y \in\{0,1\}\}
$$

Construction

$$
T:=\{(x, y) ; x \in \mathbb{C}, y \in\{0,1\}\}
$$

$$
(x, y) \sim(w, z)
$$

$$
\mathfrak{\imath}
$$

$\exists \alpha \in \mathbb{R}^{+} ; x=\alpha w$ and $y=\alpha z$

Construction

Reflexive

$$
(x, y) \sim(x, y)
$$

Construction

Reflexive

$$
(x, y) \sim(x, y)
$$

Symmetric

$$
(x, y) \sim(w, z) \Rightarrow(w, y) \sim(x, y)
$$

Construction

Reflexive

$$
(x, y) \sim(x, y)
$$

Symmetric

$$
(x, y) \sim(w, z) \Rightarrow(w, y) \sim(x, y)
$$

Transitive

$$
(x, y) \sim(w, z) \text { and }(w, z) \sim(u, v) \Rightarrow(x, y) \sim(u, v)
$$

Construction

$$
\mathbb{C}^{r}=T /
$$

Construction

Addition

$$
\text { If } \begin{aligned}
& {[x, y],[w, z] \in\{[u, 0] ; u \in \mathbb{C} \backslash\{0\}\}: } \\
& {[x, y]+[w, z]:=\left[\frac{x}{|x|}+\frac{w}{|w|}, 0\right] }
\end{aligned}
$$

otherwise,

$$
[x, y]+[w, z]:=[x z+w y, y z]
$$

Construction

Multiplication

$$
[x, y] \times[w, z]:=[x w, y z]
$$

Construction

Multiplication

$$
[x, y] \times[w, z]:=[x w, y z]
$$

Opposite

$$
-[x, y]:=[-x, y]
$$

Construction

Multiplication

$$
[x, y] \times[w, z]:=[x w, y z]
$$

Opposite

$$
-[x, y]:=[-x, y]
$$

Reciprocal

$$
[x, y]^{-1}:= \begin{cases}{\left[\frac{y}{x}, 1\right],} & x \neq 0 \\ {[y, x],} & x=0\end{cases}
$$

Construction

Subtraction

$$
[x, y]-[w, z]:=[x, y]+(-[w, z])
$$

Construction

Subtraction

$$
[x, y]-[w, z]:=[x, y]+(-[w, z])
$$

Division

$$
[x, y] \div[w, z]:=[x, y] \times[w, z]^{-1}
$$

Construction

$$
\mathbb{C}^{T}=\{[x, 1] ; x \in \mathbb{C}\} \cup\{[w, 0] ; w \in \mathbb{C},|w|=1\} \cup\{[0,0]\}
$$

Construction

$\{[x, 1] ; x \in \mathbb{C}\}$ is a copy of \mathbb{C}

Construction

$\{[x, 1] ; x \in \mathbb{C}\}$ is a copy of \mathbb{C}

$$
\mathbb{C}=\{[x, 1] ; x \in \mathbb{C}\}
$$

Construction

$\{[x, 1] ; x \in \mathbb{C}\}$ is a copy of \mathbb{C}

$$
\begin{gathered}
\mathbb{C}=\{[x, 1] ; x \in \mathbb{C}\} \\
x=[x, 1]
\end{gathered}
$$

Construction

$\{[x, 1] ; x \in \mathbb{C}\}$ is a copy of \mathbb{C}

$$
\begin{aligned}
\mathbb{C}=\{ & {[x, 1] ; x \in \mathbb{C}\} } \\
& x=[x, 1] \\
& {[x, y]=\frac{x}{y} }
\end{aligned}
$$

Construction

(r, θ)

Construction

$$
(r, \theta)=\left\{\begin{array}{c}
{[x, 1]} \\
{[u, 0]} \\
{[0,0]}
\end{array}\right.
$$

Construction

$$
(r, \theta)= \begin{cases}{[x, 1], \quad r=|x| \text { and } \theta=\operatorname{Arg}(x)} \\ {[u, 0]} \\ {[0,0]}\end{cases}
$$

Construction

$$
(r, \theta)= \begin{cases}{[x, 1],} & r=|x| \text { and } \theta=\operatorname{Arg}(x) \\ {[u, 0],} & r=\infty \\ {[0,0]} & \text { and } \theta=\operatorname{Arg}(u)\end{cases}
$$

Construction

$$
(r, \theta)=\left\{\begin{array}{ll}
{[x, 1],} & r=|x| \text { and } \theta=\operatorname{Arg}(x) \\
{[u, 0],} & r=\infty
\end{array} \text { and } \theta=\operatorname{Arg}(u)\right.
$$

Construction

$$
\mathbb{C}^{T}=\mathbb{C} \bigcup\{(\infty, \theta) ; \theta \in(-\pi, \pi]\} \cup\{\Phi\}
$$

Construction

$$
\mathbb{C}^{T}=\mathbb{C} \cup\{(\infty, \theta) ; \theta \in(-\pi, \pi]\} \cup\{\Phi\}
$$

$$
\Phi
$$

Construction

$$
\mathbb{C}^{T}=\mathbb{C} \cup\{(\infty, \theta) ; \theta \in(-\pi, \pi]\} \cup\{\Phi\}
$$

$$
\Phi
$$

Construction

$$
\begin{gathered}
\mathbb{C}^{T}=\mathbb{C} \cup\{(\infty, \theta) ; \theta \in(-\pi, \pi]\} \cup\{\Phi\} \\
\mathbf{\Phi}
\end{gathered}
$$

Construction

$$
\mathbb{C}^{T}=\mathbb{C} \cup\{(\infty, \theta) ; \theta \in(-\pi, \pi]\} \cup\{\Phi\}
$$

Examples

$$
\begin{aligned}
1 \div 0 & =[1,1] \div[0,1]=[1,1] \times[0,1]^{-1} \\
& =[1,1] \times[1,0]=[1 \times 1,1 \times 0] \\
& =[1,0]
\end{aligned}
$$

Examples

$$
\begin{aligned}
1 \div 0 & =[1,1] \div[0,1]=[1,1] \times[0,1]^{-1} \\
= & {[1,1] \times[1,0]=[1 \times 1,1 \times 0] } \\
= & {[1,0]=\begin{array}{c}
(\infty, 0) \\
\text { polar }
\end{array} }
\end{aligned}
$$

Examples

$$
\begin{aligned}
0 \div 0 & =[0,1] \div[0,1]=[0,1] \times[0,1]^{-1} \\
& =[0,1] \times[1,0]=[0 \times 1,1 \times 0] \\
& =[0,0]
\end{aligned}
$$

Examples

$$
\begin{aligned}
0 \div 0 & =[0,1] \div[0,1]=[0,1] \times[0,1]^{-1} \\
& =[0,1] \times[1,0]=[0 \times 1,1 \times 0] \\
& =[0,0]=\begin{array}{c}
\text { polar }
\end{array} \\
& =(\Phi, 0)
\end{aligned}
$$

Examples

$$
\begin{aligned}
i \div 0 & =[i, 1] \div[0,1]=[i, 1] \times[0,1]^{-1} \\
& =[i, 1] \times[1,0]=[i \times 1,1 \times 0] \\
& =[i, 0]
\end{aligned}
$$

Examples

$$
\begin{aligned}
i \div 0= & {[i, 1] \div[0,1]=[i, 1] \times[0,1]^{-1} } \\
= & {[i, 1] \times[1,0]=} \\
= & {[i \times 1,1 \times 0] } \\
& =\left(\underset{\text { polar }}{ } \quad(\infty) \frac{\pi}{2}\right)
\end{aligned}
$$

Value

Reach and Reliability

- Construction proves the consistency of the transcomplex and transreal numbers from the complex numbers
- Transcomplex numbers allow the solution of mathematical and physical problems at singularities
- Transcomplex numbers make mathematical software more reliable

Transcomplexes

 are at the beginning of their development